
ImpDAR Documentation
Release 1.0.0

David Lilien

Apr 16, 2020

Contents:

1 Requirements 3

2 Installation 5
2.1 Beginner . 5
2.2 Advanced . 6

3 Examples 7

4 Contributing 9
4.1 Installation . 9
4.2 API . 10
4.3 Executables . 27
4.4 Examples . 65

5 Indices and tables 147

Python Module Index 149

Index 151

i

ii

ImpDAR Documentation, Release 1.0.0

ImpDAR is a flexible, open-source impulse radar processor that provides most of the benefits (and some additional
features) compared to expensive commercial software. The starting point was the old St. Olaf deep radar matlab
code. This code has a lot of history of contributors–I’ve tried to preserve acknowledgment of many of them in the file
headers.

Support is gradually being added for a variety of file formats. Currently, GSSI, PulseEKKO, Radan, Blue Systems,
DELORES, SEGY, gprMAX, seidart, Gecko, and legacy StoDeep files are supported. Available processing steps
include various filtering operations, trivial modifications such as restacking, cropping, or reversing data, and a few
different geolocation-related operations like interpolating to constant trace spacing. The primary interface is through
the command line, which allows efficient processing of large volumes of data. An API, centered around the RadarData
class, is also available to allow the user to use ImpDAR in other programs.

In addition to processing, ImpDAR can also be used for picking reflectors. Picking is generally an interactive process,
and there is a light GUI for doing the picking. The GUI also provides support for basic processing operations, so you
can see the effect of steps as you go along.

Contents: 1

ImpDAR Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

Requirements

Python 2.7+ or 3.4+

numpy, scipy, matplotlib

To do anything involving geolocation, you will also need GDAL. The GUI, which is needed to be able to pick reflectors,
requires PyQt5. SegYIO is needed for SEGY support and for SeisUnix migration. h5py is needed for some data
formats.

3

http://www.numpy.org
http://www.scipy.org
http://matplotlib.org
http://gdal.org
https://pypi.org/project/PyQt5/
https://github.com/equinor/segyio/
https://h5py.org

ImpDAR Documentation, Release 1.0.0

4 Chapter 1. Requirements

CHAPTER 2

Installation

2.1 Beginner

If you do not have a current (2.7 or 3+) python installation, you will need one to begin. I recommend getting python 3
from anaconda. The Anaconda installer is straightforward to use, and you can let it set up your path, which makes the
subsequent commands “just work.” However, Anaconda on Windows suggests not putting it on your path and instead
using the Anaconda prompt. The procedure is the same–just open an anaconda prompt window after installation then
continue. If you are on MacOS or Linux, you will want to restart your terminal after installing Anaconda so you get
updated path specs.

Next, we need to install dependencies. GDAL is needed for accurate measurement of distance, and for converting
coordinate systems. I recommend getting it and segyio, used for interacting with the SEGY data format, using,

conda install -c conda-forge gdal segyio

This step can be really slow, so don not worry if it is a bit painful. At this point, I also recommend installing h5py, just
so that you are ready for all presently supported formats. This can be done with

conda install h5py

Now, you are ready to install impdar. You can get a version with

pip install impdar

If you are not a super user, you may get an error related to permissions. This is fine, you just need to install for yourself
only. Use

pip install --user impdar

You should now be all set to start using ImpDAR. Scroll down for documentation and links for examples.

5

https://anaconda.org/

ImpDAR Documentation, Release 1.0.0

2.2 Advanced

If you are not using Anaconda, you are on your own for installing dependencies. The challenges are generally GDAL
and PyQt5, since these rely on libraries in other languages. For the most basic use cases, you can skip these, and go
straight to installing ImpDAR with pip or through github.

To be sure that you have the newest version of ImpDAR as a lot of development is happening, you will want to use the
development branch from GitHub. The pypi (pip) version is not updated as often to ensure a stable release. To get the
devel version off git,

git clone -b devel https://github.com/dlilien/ImpDAR.git
cd impdar
python setup.py install

This requires git.

If you want to have the full suite of migration options, you will need to install seisunix. The SeisUnix install is bit
complicated, but there are instructions with it. It should be possible to use SeisUnix on Windows with CygWin then
interface with ImpDAR, but this is untested.

6 Chapter 2. Installation

https://git-scm.com/downloads
https://github.com/JohnWStockwellJr/SeisUnix/wiki

CHAPTER 3

Examples

Check out the examples, particularly the Jupyter notebook examples beginning with getting started, for an idea of how
to run ImpDAR. These should be a good starting point that can be modified for a particular use case. While all of the
output and input are on this website, if you actually want to run the code you can download all the notebooks and run
them yourself. You can get those here.

7

https://github.com/Jakidxav/ImpDAR_tutorials

ImpDAR Documentation, Release 1.0.0

8 Chapter 3. Examples

CHAPTER 4

Contributing

I would be thrilled to get pull requests for any additional functionality. In particular, it is difficult for me to add support
for input formats for which I do not have example data–any development of readers for additional data types would be
greatly appreciated.

4.1 Installation

4.1.1 Beginner

If you do not have a current (2.7 or 3+) python installation, you will need one to begin. I recommend getting python 3
from anaconda. The Anaconda installer is straightforward to use, and you can let it set up your path, which makes the
subsequent commands “just work.” However, Anaconda on Windows suggests not putting it on your path and instead
using the Anaconda prompt. The procedure is the same–just open an anaconda prompt window after installation then
continue. If you are on MacOS or Linux, you will want to restart your terminal after installing Anaconda so you get
updated path specs.

Next, we need to install dependencies. GDAL is needed for accurate measurement of distance, and for converting
coordinate systems. I recommend getting it and segyio, used for interacting with the SEGY data format, using,

conda install -c conda-forge gdal segyio

This step can be really slow, so don not worry if it is a bit painful. At this point, I also recommend installing h5py, just
so that you are ready for all presently supported formats. This can be done with

conda install h5py

Now, you are ready to install impdar. You can get a version with

pip install impdar

If you are not a super user, you may get an error related to permissions. This is fine, you just need to install for yourself
only. Use

9

https://anaconda.org/

ImpDAR Documentation, Release 1.0.0

pip install --user impdar

You should now be all set to start using ImpDAR. Scroll down for documentation and links for examples.

4.1.2 Advanced

If you are not using Anaconda, you are on your own for installing dependencies. The challenges are generally GDAL
and PyQt5, since these rely on libraries in other languages. For the most basic use cases, you can skip these, and go
straight to installing ImpDAR with pip or through github.

To be sure that you have the newest version of ImpDAR as a lot of development is happening, you will want to use the
development branch from GitHub. The pypi (pip) version is not updated as often to ensure a stable release. To get the
devel version off git,

git clone -b devel https://github.com/dlilien/ImpDAR.git
cd impdar
python setup.py install

This requires git.

If you want to have the full suite of migration options, you will need to install seisunix. The SeisUnix install is bit
complicated, but there are instructions with it. It should be possible to use SeisUnix on Windows with CygWin then
interface with ImpDAR, but this is untested.

4.2 API

This section documents the classes and functions of the libraries underlying ImpDAR. These really are the workhorses
behind the executables that you would use for command-line processing. On the other hand, if you want to integrate
the processing steps implemented by ImpDAR into another program, you will be interacting with these libraries.

The central component of ImpDAR processing is the RadarData class. Not only does this object store all the radar
returns and auxiliary information, it also has a number of methods for processing.

Some processing steps may be implemented separately from the RadarData class. At present, just
concatenation, is separate because it acts on multiple RadarData objects.

Contents:

4.2.1 RadarData

This page contains the documentation for the RadarData class, which is the basic object in ImpDAR. If you are
interacting with the API in a significant way, this is where you will find documentation from most of the things you
care about, particularly how the data is stored and how to do basic processing steps on it. All of the files to define the
class are in impdar/lib/Radardata, with the basic initialization and class properties found in __init__.py and addional
functionality spread across _RadarDataSaving, _RadarDataFiltering, and _RadarDataProcessing.

RadarData Base

class impdar.lib.RadarData.RadarData(fn_mat)
A class that holds the relevant information for a radar profile.

We keep track of processing steps with the flags attribute. This base version’s __init__ takes a filename of a .mat
file in the old StODeep format to load.

10 Chapter 4. Contributing

https://git-scm.com/downloads
https://github.com/JohnWStockwellJr/SeisUnix/wiki

ImpDAR Documentation, Release 1.0.0

attrs_guaranteed = ['chan', 'data', 'decday', 'dt', 'pressure', 'snum', 'tnum', 'trace_int', 'trace_num', 'travel_time', 'trig', 'trig_level']
Attributes that every RadarData object should have. These should not be None.

attrs_optional = ['nmo_depth', 'lat', 'long', 'elev', 'dist', 'x_coord', 'y_coord', 'fn']
Optional attributes that may be None without affecting processing. These may not have existed in old
StoDeep files, and they often cannot be set at the initial data load. If they exist, they all have units of
meters.

chan = None
The Channel number of the data.

check_attrs()
Check if required attributes exist.

This is largely for development only; loaders should generally call this method last, so that they can confirm
that they have defined the necessary attributes.

Raises ImpdarError – If any required attribute is None, or any optional attribute is fully
absent

data = None
np.ndarray(snum x tnum) of the actual return power.

decday = None
np.ndarray(tnum,) of the acquisition time of each trace note that this is referenced to Jan 1, 0 CE (matlabe
datenum) for convenience, use the datetime attribute to access a python version of the day

dist = None
np.ndarray(tnum,) of the distances along the profile. units will depend on whether geographic coordinate
transforms, as well as GPS data, are available.

dt = None
float, The spacing between samples in travel time, in seconds.

elev = None
np.ndarray(tnum,) Optional. Elevation along the profile.

fn = None
str, the input filename. May be left as None.

lat = None
np.ndarray(tnum,) latitude along the profile. Generally not in projected coordinates

long = None
np.ndarray(tnum,) longitude along the profile. Generally not in projected coords.

nmo_depth = None
np.ndarray(tnum,) Optional. Depth of each trace below the surface

pressure = None
np.ndarray(tnum,) The pressure at acquisition. ImpDAR does not use this at present.

snum = None
int number of samples per trace

tnum = None
int, the number of traces in the file

trace_int = None
float, the time between traces.

trace_num = None
np.ndarray(tnum,) The 1-indexed number of the trace

4.2. API 11

ImpDAR Documentation, Release 1.0.0

travel_time = None
np.ndarray(snum,) The two way travel time to each sample, in us

trig = None
np.ndarray(tnum,) the index in each trace where the triggered.

trig_level = None
float, The value on which the radar was triggering.

x_coord = None
np.ndarray(tnum,) Optional. Projected x-coordinate along the profile.

y_coord = None
np.ndarray(tnum,) Optional. Projected y-coordinate along the profile.

Saving RadarData

These are all instance methods for saving information from a RadarData object. They are defined in imp-
dar/lib/RadarData/_RadarDataSaving.py.

RadarData.save(fn)
Save the radar data

Parameters fn (str) – Filename. Should have a .mat extension

RadarData.save_as_segy(fn)

RadarData.output_shp(fn, t_srs=4326, target_out=None)
Output a shapefile of the traces.

If there are any picks, we want to output these. If not, we will only output the tracenumber. This function
requires osr/gdal for shapefile creation. I suggest exporting a csv if you don’t want to deal with gdal.

Parameters

• fn (str) – The filename of the output

• t_srs (int, optional) – EPSG number of the target spatial reference system. Default
4326 (wgs84)

• target_out (str, optional) – Used to overwrite the default output format of picks.
By default, try to write depth and if there is no nmo_depth use TWTT. You might want to
use this to get the output in TWTT or sample number (options are depth, elev, twtt, snum)

RadarData.output_csv(fn, target_out=None, delimiter=’, ’)
Output a csv of the traces.

If there are any picks, we want to output these. If not, we will only output the tracenumber.

Parameters

• fn (str) – The filename of the output

• target_out (str, optional) – Used to overwrite the default output format of picks.
By default, try to write depth and if there is no nmo_depth use TWTT. You might want to
use this to get the output in TWTT or sample number (options are depth, elev, twtt, snum)

• delimiter (str, optional) – Delimiter for csv. Default ‘,’.

12 Chapter 4. Contributing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ImpDAR Documentation, Release 1.0.0

Processing RadarData

These are all instance methods for processing data on a RadarData object. They are defined in imp-
dar/lib/RadarData/_RadarDataProcessing.py.

RadarData.reverse()
Reverse radar data

Essentially flip the profile left-right. This is desirable in a number of instances, but is particularly useful for
concatenating profiles acquired in opposite directions. The St Olaf version of this function had a bunch of
options. They seemed irrelevant to me. We just try to flip everything that might need flipping.

RadarData.nmo(ant_sep, uice=169000000.0, uair=300000000.0, rho_profile=None, permittiv-
ity_model=<function firn_permittivity>, const_sample=True)

Normal move-out correction.

Converts travel time to distance accounting for antenna separation. This potentially affects data and snum. It
also defines nmo_depth, the moveout-corrected depth

Updated to accomodate vertical velocity profile. B Hills 8/2019

Parameters

• ant_sep (float) – Antenna separation in meters.

• uice (float or np.ndarray (2 x m), optional) – Speed of light in ice, in
m/s. (different from StoDeep!!). Default 1.69e8.

• uair (float, optional) – Speed of light in air. Default 3.0e8

• rho_profile (str,optional) – Filename for a csv file with density profile (depths
in first column and densities in second) Units should be meters for depth, kgs per meter
cubed for density. Note that using a variable uice will break the linear scaling between
depth and time, so we are forced to choose whether the y-axis is linear in speed or time. I
chose time, since this eases calculations like migration. For plotting vs. depth, however,
the functions just use the bounds, so the depth variations are averaged out. You can use the
helper function constant_sample_depth_spacing() in order to correct this, but you should
call that after migration.

• permittivity_model (fun, optional) – density to permittivity model from the
literature

• const_sample (bool, optional) – interpolate to constant sample spacing after the
nmo correction

RadarData.crop(lim, top_or_bottom=’top’, dimension=’snum’, uice=169000000.0, rezero=True,
zero_trig=True)

Crop the radar data in the vertical. We can take off the top or bottom.

This will affect data, travel_time, and snum.

Parameters

• lim (float (int if dimension=='snum')) – The value at which to crop.

• top_or_bottom (str, optional) – Crop off the top (lim is the first remaining re-
turn) or the bottom (lim is the last remaining return).

• dimension (str, optional) – Evaluate in terms of sample (snum), travel time (twtt),
or depth (depth). If depth, uses nmo_depth if present and use uice with no transmit/receive
separation. If pretrig, uses the recorded trigger sample to crop.

• rezero (bool, optional) – Set the zero on the y axis to the cropped value (if cropping
off the top). Default True. This is desirable if you are zeroing to the surface.

4.2. API 13

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ImpDAR Documentation, Release 1.0.0

• zero_trig (bool, optional) – Reset the trigger to zero. Effectively asserts that the
crop was to the surface. Default True.

• uice (float, optional) – Speed of light in ice. Used if nmo_depth is None and
dimension==’depth’

RadarData.restack(traces)
Restack all relevant data to the given number of traces.

This function just takes the average of the given number of traces. This reduces file size and can get rid of noise.
There are fancier ways to do this— if you have GPS, you probably want to restack to constant trace spacing
instead.

Parameters traces (int) – The (odd) number of traces to stack

RadarData.rangegain(slope)
Apply a range gain.

Parameters slope (float) – The slope of the linear range gain to be applied. Maybe try 1.0e-2?

RadarData.agc(window=50, scaling_factor=50)
Try to do some automatic gain control

This is from StoDeep–I’m not sure it is useful but it was easy to roll over so I’m going to keep it. I think you
should have most of this gone with a bandpass, but whatever.

Parameters

• window (int, optional) – The size of window we use in number of samples (default
50)

• scaling_factor (int, optional) – The scaling factor. This gets divided by the
max amplitude when we rescale the input. Default 50.

RadarData.constant_space(spacing, min_movement=0.01, show_nomove=False)
Restack the radar data to a constant spacing.

This method uses the GPS information (i.e. the distance, x, y, lat, and lon), to do a 1-d interpolation to get new
values in the radargram. It also updates related variables like lat, long, elevation, and coordinates. To avoid
retaining sections of the radargram when the antenna was in fact stationary, some minimum movement between
traces is enforced. This value is in meters, and should change to be commensurate with the collection strategy
(e.g. skiing a radar is slower than towing it with a snowmobile).

This function comprises the second half of what was done by StoDeep’s interpdeep. If you have GPS data from
an external, high-precision GPS, you would first want to call impdar.lib.gpslib.kinematic_gps_control so that
the GPS-related variables are all improved, then you would want to call this method. impdar.lib.gpslib provides
some wrappings for doing both steps and for loading in the external GPS data.

Parameters

• spacing (float) – Target trace spacing, in meters

• min_movement (float, optional) – Minimum trace spacing. If there is not this
much separation, toss the next shot. Set high to keep everything. Default 1.0e-2.

• show_nomove (bool, optional) – If True, make a plot shading the areas where we
think there is no movement. This can be really helpful for diagnosing what is wrong if you
have lingering stationary traces.

RadarData.elev_correct(v_avg=169000000.0)
Move the surface down in the data array to account for surface elevation.

14 Chapter 4. Contributing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

ImpDAR Documentation, Release 1.0.0

NMO depth attribute must have been created before elev_correct is called. This method should generally be
called after you have interpolated precision GPS onto the data, otherwise the noise a handheld GPS will make
the results look pretty bad.

Be aware that this is not a precise conversion if your nmo correction had antenna separation, or if you used a
depth-variable velocity structure. This is because we have a single vector describing depths in the data array, so
only one value for each depth step.

Parameters v_avg (float, optional) – Average velocity. This is what will define the depth
slices in the new data array. Default 1.69e8.

Raises ValueError: – If there is no nmo_depth since this is used for calculating depths

Filtering Radar Data

These are all instance methods for filtering data to remove noise. They are defined in imp-
dar/lib/RadarData/_RadarDataFiltering.py.

RadarData.migrate(mtype=’stolt’, vtaper=10, htaper=10, tmig=0, vel_fn=None, vel=168000000.0, nx-
pad=10, nearfield=False, verbose=0)

Migrate the data.

This is a wrapper around all the migration routines in migration_routines.py.

Parameters mtype (str, optional) – The chosen migration routine. Options are: kirch, stolt,
phsh. Default: stolt

RadarData.vertical_band_pass(low, high, order=5, filttype=’butter’, cheb_rp=5,
fir_window=’hamming’, *args, **kwargs)

Vertically bandpass the data

This function uses a forward-backward filter on the data. Returns power that is not near the wavelength of the
transmitter is assumed to be noise, so the limits for the filtering should generally surround the radar frequency.
Some experimentation may be needed to see what gives the clearest results for any given data

There are a number of options for the filter type. Depending on the type of filter chosen, some other p

Parameters

• low (float) – Lowest frequency passed, in MHz

• high (float) – Highest frequency passed, in MHz

• order (int) – Filter order (default 5)

• filttype (str, optional) – The filter type to use. Options are butter(worth),
cheb(yshev type I), bessel, or FIR (finite impulse response). Default is butter.

• cheb_rp (float, optional) – Maximum ripple, in decibels, of Chebyshev filter.
Only used if filttype==’cheb’. Default is 5.

• fir_window (str, optional) – The window type passed to scipy.signal.firwin. Only
used if filttype==’fir’. Default is hamming’

RadarData.adaptivehfilt(window_size=1000, *args, **kwargs)
Adaptively filter to reduce noise in upper layers

This subtracts the average of traces around an individual trace in order to filter it. You can call this method
directly, or it can be called by sending the ‘adaptive’ option to RadarData.hfilt()

Original StoDeep Documentation: HFILTDEEP-This StoDeep subroutine processes bandpass filtered or
NMO data to reduce the horizontal noise in the upper layers. The user need not specify any frequen-
cies. This program simply takes the average of all of the traces and subtracts it from the bandpassed data.

4.2. API 15

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

ImpDAR Documentation, Release 1.0.0

It will remove most horizontally-oriented features in a radar profile: ringing, horizontal reflectors. It will
also create artifacts at travel-times corresponding to any bright horizontal reflectors included in the average
trace.

You will want to experiment with the creation of the average trace. Ideally choose an area where all
reflectors are sloped and relatively dim so that they average out while the horizontal noise is amplified.
Note that generally there is no perfect horizontal filter that will work at all depths. You will have to
experiment to get the best results for your area of interest.

WARNING: Do not use hfiltdeep on elevation-corrected data!!!

Created: Logan Smith - 6/12/02 Modified by: L. Smith, 5/27/03. K. Dwyer, 6/3/03. B. Welch, 5/2/06. B.
Youngblood, 6/13/08. J. Olson, 7/10/08

RadarData.horizontalfilt(ntr1, ntr2, *args, **kwargs)
Remove the average trace.

Parameters

• ntr1 (int) – Leftmost trace for averaging

• ntr2 (int) – Rightmost trace for averaging

Original StoDeep Documentation: HFILTDEEP - This StoDeep subroutine processes bandpass filtered or
NMO data to reduce the horizontal noise in the upper layers. The user need not specify any frequen-
cies. This program simply takes the average of all of the traces and subtracts it from the bandpassed data.
It will remove most horizontally-oriented features in a radar profile: ringing, horizontal reflectors. It will
also create artifacts at travel-times corresponding to any bright horizontal reflectors included in the average
trace.

You will want to experiment with the creation of the average trace. Ideally choose an area where all
reflectors are sloped and relatively dim so that they average out while the horizontal noise is amplified.
Note that generally there is no perfect horizontal filter that will work at all depths. You will have to
experiment to get the best results for your area of interest.

RadarData.highpass(wavelength)
High pass in the horizontal for a given wavelength.

This only works if the data have constant trace spacing; we check the processing flags to enforce this.

Parameters wavelength (int) – The wavelength to pass, in meters.

Original StoDeep Documentation: HIGHPASSDEEP - This is NOT a highpass frequency filter–rather it is a
horizontal filter to be used after interpolation because our data now has constant spacing and a constant
time. Note that this horizontal filter requires constant trace-spacing in order to be effective.

You will want to experiment with the creation of the average trace. Ideally choose an area where all
reflectors are sloped and relatively dim so that they average out while the horizontal noise is amplified.
Note that generally there is no perfect horizontal filter that will work at all depths. You will have to
experiment to get the best results for your area of interest.

WARNING: Do not use highpassdeep on elevation-corrected data!!!

Created by L. Smith and modified by A. Hagen, 6/15/04. B. Welch, 5/3/06. J. Werner, 6/30/08. J. Olson,
7/10/08

RadarData.winavg_hfilt(avg_win, taper=’full’, filtdepth=100)
Uses a moving window to find the average trace, then subtracts this from the data.

Parameters

16 Chapter 4. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

ImpDAR Documentation, Release 1.0.0

• avg_win (int) – The size of moving window. Must be odd and less than tnum. We will
correct these rather than raise an exception.

• taper (str) – How the filter varies with depth. Options are full or pexp. For full, the
power tapers exponentially. For pexp, the filter stops after the sample number given by
filtdepth.

Original StoDeep Documentation:

WINAVG_HFILTDEEP - This StoDeep subroutine performs a horizontal filter on the data to
reduce the ringing in the upper layers. It uses a moving window to create an average trace for
each individual trace, applies an exponential taper to it and then subtracts it from the trace. This is
based off of the original hfiltdeep and uses the moving window designed in cosine_win_hfiltdeep.
The extent of the taper can help to minimize artifacts that are often produced near regions of bright
bed reflectors.

You will want to experiment with the creation of the average trace. Ideally choose an area where
all reflectors are sloped and relatively dim so that they average out while the horizontal noise is
amplified. Note that generally there is no perfect horizontal filter that will work at all depths. You
will have to experiment to get the best results for your area of interest.

WARNING: Do not use winavg_hfiltdeep on elevation-corrected data!!!

Created: Kieran Dwyer 6/18/03 Modified by B. Welch, 5/2/06. J. Olson, 7/10/08.

RadarData.hfilt(ftype=’hfilt’, bounds=None)
Horizontally filter the data.

This is a wrapper around other filter types. Horizontal filters are implemented (and documented) in the
impdar.lib.horizontal_filters module.

Parameters

• ftype (str, optional) – The filter type. Options are hfilt and adaptive. De-
fault hfilt

• bounds (tuple, optional) – Bounds for the hfilt. Default is None, but required if
ftype is hfilt.

4.2.2 Plotting

Plotting functions for radar data.

impdar.lib.plot.plot(fns, tr=None, s=False, ftype=’png’, dpi=300, xd=False, yd=False, x_range=(0,
-1), power=None, spectra=None, freq_limit=None, window=None, scal-
ing=’spectrum’, filetype=’mat’, pick_colors=None, ft=False, hft=False,
clims=None, cmap=<matplotlib.colors.LinearSegmentedColormap object>,
flatten_layer=None, *args, **kwargs)

Wrap a number of plot types.

This should really only be used by the exectuables. If you are plotting yourself, just use the individual plotting
functions that are described below.

Parameters

• fns (list of strs) – A list of filenames to plot individually.

• tr (tuple or int, optional) – Plot traces tr[1] to tr[2] (or trace tr) rather than the
radargram. Default is None (plot radargram).

• power (int, optional) – If not None, then plot power returned from this layer

4.2. API 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

ImpDAR Documentation, Release 1.0.0

• filetype (str, optional) – Type of input file. Default mat.

• x_range (tuple, optional) – The range of traces to plot in the radargram. Default
is (0, -1) (plot all traces)

• flatten_layer (int, optional) – Distort the radargram so this layer is flat. De-
fault is None (do not distort).

impdar.lib.plot.plot_ft(dat, fig=None, ax=None, **line_kwargs)
Plot the Fourier spectrum of the data in the vertical.

This will give the power spectral density in terms of the frequency (in MHz). We first fft, then average the fft.

Parameters

• dat (impdar.lib.RadarData.Radardata) – The RadarData object to plot.

• fig (matplotlib.pyplot.Figure) – Figure canvas that should be plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that should be plotted upon

• **line_kwargs – Arguments passed to the plotting call (e.g. color, linewidth)

Returns

• fig (matplotlib.pyplot.Figure) – Figure canvas that was plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that were plotted upon

impdar.lib.plot.plot_hft(dat, fig=None, ax=None)
Plot the Fourier spectrum of the data in the horizontal.

This will give the power spectral density as a function of the horizontal wavelength (in meters). We first fft, then
average the fft

Parameters

• dat (impdar.lib.RadarData.Radardata) – The RadarData object to plot.

• fig (matplotlib.pyplot.Figure) – Figure canvas that should be plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that should be plotted upon

Returns

• fig (matplotlib.pyplot.Figure) – Figure canvas that was plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that were plotted upon

impdar.lib.plot.plot_picks(rd, xd, yd, colors=None, flatten_layer=None, fig=None, ax=None)
Update the plotting of the current pick.

Parameters

• colors (str) – You have choices here. This can be a npicksx3 list, an npicks list of 3-
letter strings, a 3 letter string, a single string, or a npicks list. Any of the x3 options are
interpretted as top, middle, bottom colors. If it is a string, the lines are all plotted in this
color. If it is a list, the different values are used for the different lines.

• flatten_layer (int, optional) – Make this layer flat in the plot. Distorts all lay-
ers. Default is no distortion.

impdar.lib.plot.plot_power(dats, idx, fig=None, ax=None, clims=None)
Make a plot of the reflected power along a given pick.

Parameters

• dat (impdar.lib.RadarData.Radardata) – The RadarData object to plot.

18 Chapter 4. Contributing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ImpDAR Documentation, Release 1.0.0

• idx (int) – A picknum in the dat.picks.picknum array

• fig (matplotlib.pyplot.Figure) – Figure canvas that should be plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that should be plotted upon

Returns

• fig (matplotlib.pyplot.Figure) – Figure canvas that was plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that were plotted upon

impdar.lib.plot.plot_radargram(dat, xdat=’tnum’, ydat=’twtt’, x_range=(0, -1), y_range=(0, -1),
cmap=<matplotlib.colors.LinearSegmentedColormap object>,
fig=None, ax=None, return_plotinfo=False, pick_colors=None,
clims=None, flatten_layer=None)

Plot a radio echogram.

This function is a little weird since I want to be able to plot on top of existing figures/axes or on new figures an
axes. There is therefore an argument return_plotinfo that funnels between these options and changes the return
types.

Parameters

• dat (impdar.lib.RadarData.Radardata) – The RadarData object to plot.

• xdat (str, optional) – The horizontal axis units. Either tnum or dist(ance).

• ydat (str, optional) – The vertical axis units. Either twtt or or depth. Default twtt.

• x_range (2-tuple, optional) – The range of values to plot, in tnum space. Default
is plot everything (0, -1)

• y_range (2-tuple, optional) – The range of values to plot, in snum space. Default
is plot everything (0, -1)

• cmap (matplotlib.pyplot.cm, optional) – The colormap to use

• fig (matplotlib.pyplot.Figure) – Figure canvas that should be plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that should be plotted upon

Returns

• If not return_plotinfo –

fig: matplotlib.pyplot.Figure Figure canvas that was plotted upon

ax: matplotlib.pyplot.Axes Axes that were plotted upon

• else –

im: pyplot.imshow The image object plotted

xd: np.ndarray The x values of the plot

yd: np.ndarray The y values of the plot

x_range: 2-tuple The limits of the x range, after modification to remove negative indices

clims: 2-tuple The limits of the colorbar

impdar.lib.plot.plot_spectrogram(dat, freq_limit=None, window=None, scaling=’spectrum’,
fig=None, ax=None, **kwargs)

Make a plot of power spectral density across all traces of a radar profile.

Parameters

• dat (impdar.lib.RadarData.Radardata) – The RadarData object to plot.

4.2. API 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ImpDAR Documentation, Release 1.0.0

• freq_limit (tuple) – The minimum and maximum frequency (in MHz) to limit the
y-axis to

• window (str, optional) – Type of window to be used for the signal.periodogram()
method.

Default hamming. Further information

• scaling (str, optional) – Whether to plot power spectral density or power spec-
trum ‘density’ or ‘spectrum’, the default being ‘spectrum’. Further information

• fig (matplotlib.pyplot.Figure, optional) – Figure canvas that should be
plotted upon

• ax (matplotlib.pyplot.Axes, optional) – Axes that should be plotted upon

Returns

• fig (matplotlib.pyplot.Figure) – Figure canvas that was plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that were plotted upon

impdar.lib.plot.plot_traces(dat, tr, ydat=’twtt’, fig=None, ax=None, linewidth=1.0,
linestyle=’solid’)

Plot power vs depth or twtt in a trace.

Parameters

• dat (impdar.lib.RadarData.Radardata) – The RadarData object to plot.

• tr (int or 2-tuple) – Either a single trace or a range of traces to plot

• ydat (str, optional) – The vertical axis units. Either twtt or or depth. Default twtt.

• fig (matplotlib.pyplot.Figure) – Figure canvas that should be plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that should be plotted upon

Returns

• fig (matplotlib.pyplot.Figure) – Figure canvas that was plotted upon

• ax (matplotlib.pyplot.Axes) – Axes that were plotted upon

4.2.3 Interpretation

Interpretation in this context primarily means picking layers (either isochrones or the bed). In the future, this function-
ality may be expanded to make picking other things, e.g. some discontinuity, easier.

Functions used for picking

Functions that are a for the mechanics of picking, not for the display.

impdar.lib.picklib.get_intersection(data_main, data_cross, return_nans=False)
Find the intersection of two radar datasets.

Used for plotting up where pick depths at places where two profiles cross. This is a pretty simple function as
implemented, so it is not going to find you multiple intersections. Rather, you are just going to get the single
point where the traces are closest. Note that this will work picking sequential profiles too. If there are nans at
the intersection, we look for the closest non-nan.

Parameters

20 Chapter 4. Contributing

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

ImpDAR Documentation, Release 1.0.0

• data_main (impdar.lib.RadarData.RadarData) – The RadarData object upon
which you want the intersection in reference to (i.e. then one you will plot up)

• data_cross (impdar.lib.RadarData.RadarData) – The crossprofile from
which you are going to plot up layers. Must have some picks in it.

• return_nans (bool, optional) – Return the closest sample, even if it was nan-
picked. Default is false (find closest non-nan value)

Returns

• np.ndarray (npicks,) – The tracenumber in the main profile at which we are getting the
sample from the crossprofile

• np.ndarray (npicks,) – The depths (in sample number) of the layers in the cross profile. Note
that this essentially assume you are using the same snum/depth conversion between the two
profiles.

Raises AttributeError: – if there are no picks in the cross profile.

impdar.lib.picklib.packet_pick(trace, pickparams, midpoint)
Really do the picking.

This is where we look for the highest amplitude return, and the opposite polarity returns surrounding it

Parameters

• trace (1d numpy.ndarray) – The trace in which we are looking for our return

• pickparams (impdar.lib.PickParameters.PickParameters) – The infor-
mation about picking that we need for determining window size and polarity

• midpoint (int) – The guess at the index where a pick is, used for searching out the
highest amplitude return

Returns len=5. Top of packet, middle of packet, bottom of packet, nan, power

Return type list

impdar.lib.picklib.packet_power(trace, plength, midpoint)
Return power of a packet.

This function is pretty boring. It just finds a window around a point in a trace.

Parameters

• trace (numpy.ndarray) – (snum,) The trace in which to find the window

• plength (float) – The size of the packet (in samples)

• midpoint (int) – The central sample

Returns

• numpy.ndarray – The packet of length plength

• int – The index of the top sample (desirable for calculating overall indices in functions that
call this one).

impdar.lib.picklib.pick(traces, snum_start, snum_end, pickparams)
Pick a reflector in some traces.

Uses a line between the starting and ending picks to guide picking the maximum (or minimum) return, and the
surrounding peaks with opposite polarity.

Parameters

4.2. API 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

ImpDAR Documentation, Release 1.0.0

• traces (numpy.ndarray) – The chunk of data we are picking. Should be a slice of the
overall data with shape snum x (size to pick)

• snum_start (int) – The index of the pick in the leftmost trace. We would normally get
this from the last pick.

• snum_end (int) – The index of the pick in the rightmost trace.

• pickparams (impdar.lib.PickParameters.PickParameters) – Use for polarity, frequency,
plength.

Returns The picks selected. Rows are: top of packet, center pick, bottom of packet, time (depre-
cated, all nans), and power. Size 5xtnum

Return type numpy.ndarray

Classes used by interpreter

These classes are broken down to match the structure of StODeep, so we store information about how the picks get
made, and the picks themselves, using different objects.

If you have done some interpretation, you will likely want to subsequently interact with the Picks object. Often, this
can be done without accessing the API by converting the picks/geospatial data to another form, e.g. with impdar
convert shp fn_picked.mat. You can also make plots with the picks on top of the radar data, or with the return power
in geospatial coordinates, using impplot rg fn_picked.mat or impplot power fn_picked.mat layer_num. For further
operations, you will probably want to access the Picks object described next. For example, using the picks object you
could do something like

import numy as np
import matplotlib.pyplot as plt
from impdar.lib import RadarData
rd = RadarData('[PICKED_DATA_FN.mat]')

make a basic plot of the radargram
fig, ax = plt.subplots()
im, _, _, _, _ = plot.plot_radargram(rd, fig=fig, ax=ax, xdat='dist', ydat='depth',
→˓return_plotinfo=True)

calculate the return power
c = 10. * np.log10(rd.picks.power[0, :])
c -= np.nanmax(c)

plot the return power on the layer, being careful of NaNs
mask = ~np.isnan(rd.picks.samp1[0, :])
cm = ax.scatter(rd.dist[mask.flatten()],

rd.nmo_depth[rd.picks.samp1[0, :].astype(int)[mask]],
c=c.flatten()[mask.flatten()],
s=1)

The Picks structure tracks picks and picking parameters.

class impdar.lib.Picks.Picks(radardata, pick_struct=None)
Information about picks.

This object holds all picks for a given radargram. The main containers are matrices holding information about
the indices in the data matrix a given pick lies.

samp1
Min/max above the center of each pick. A new row for each new pick.

22 Chapter 4. Contributing

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

ImpDAR Documentation, Release 1.0.0

Type nsamp x tnum array

samp2
Max/min at the center of each pick. A new row for each new pick.

Type nsamp x tnum array

samp3
Max/min below the center of each pick. A new row for each new pick.

Type nsamp x tnum array

time
In StoDeep used to contain TWTT samp2. Since this is redundant I’m deptrecating it, and it will be zeros
for impdar processed data.

Type nsamp x tnum array

power
Power across a pick. To get this in decibels, you need to take 10. * np.log10(power)

Type nsamp x tnum array

picknums
The number of each pick.

Type list of length nsamp

lasttrace
Information about the end of the trace

Type impdar.lib.LastTrace.LastTrace

lt
StoDeep legacy for compatibility, unused

Type impdar.lib.LeaderTrailer.LeaderTrailer

pickparams
This structure contains important information used in picking, such as frequency for picks.

Type impdar.lib.PickParameters.PickParameters

add_pick(picknum=0)
Add a new pick.

This method handles any complexity in adding a new pick. If no picks exist, it creates the matrices.
Otherwise, it just adds rows. If the last pick hasn’t been used, this just recycles that pick.

Parameters picknum (int, optional) – Number to call the new pick. Default zero

Returns index – The index of the row number containing the new pick

Return type int

Raises ValueError if the picknum already exists–we do not deal with repeats

to_struct()
Convert to a format writable to a .mat file.

Returns mat – Dictionary of attributes for export with scipy.io.savemat

Return type dict

update_pick(picknum, pick_info)
Update a pick with new information.

4.2. API 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

ImpDAR Documentation, Release 1.0.0

Rather than go in and manually update a pick every time it is changed, we take in all information about an
individual pick simultaneously and this method updates the pick’s information in the Pick object.

Parameters

• picknum (int) – The pick number to update. Must be in picknums

• pick_info (5xtnum np.ndarray) – Array where rows are upper pick bound, pick
center, lower pick bound, time (deprecated, usually left as zeros or nans), and power across
the pick.

Raises

• ValueError if picknum is not in picknums or if the shape of the

• pick_info is bad.

Structure with input data for the picking algoriths.

class impdar.lib.PickParameters.PickParameters(radardata, pickparams_struct=None)
Some information used for determining for picks.

This object contains several things that you need to know in order to pick a radar layer, like the frequency of
layers you are looking for and the size window in which to search.

apickthresh
Some kind of auto picking threshold (Unused: default 10)

Type float

freq
Frequency of the layer pick (default 4)

Type float

dt
Time between acquisitions

Type float

plength
The total packet to search for peaks

Type float

FWW
The width of the center portion which we are going to search

Type float

scst
The offset which we will search at

Type float

pol
Polarity of the picks

Type int

apickflag
I think this just kept track of whether StoDeep was autopicking

Type int

addpicktype
Some flag

24 Chapter 4. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

ImpDAR Documentation, Release 1.0.0

Type str

radardata
A link back up to the RadarData object with which this is affiliated

Type RadarData

freq_update(freq)
Update the frequency at which we are looking.

This is more complicated than just setting freq because other variables are a function of frequency and if
not updated will break.

Parameters freq (float) – Target pick frequency.

to_struct()
Return attributes as a dictionary for saving.

Guards against Nones so we can export to matlab

Returns The data for export with scipy.io.savemat

Return type dict

4.2.4 Loading data

These are functions for loading loading radar data, generally from raw formats, to be used in a program or saved in
ImpDAR’s .mat format and used later.

For every filetype that ImpDAR can handle (e.g. GSSI .DZT files, gprMax .h5 files), there is a dedicated file
for loading that filetype in impdar/lib/load. These files generally define a single method, which returns an imp-
dar.lib.RadarData.RadarData object, with information specific to the filetype loaded in. The user does not need to
interact with these files (unless they need to add functionality).

Instead, to load data for interactive use, a generic load command, which takes a filetype as an argument, is defined in
impdar.lib.load.__init__. This wrapper provides some conveniences for handling multiple files as well. There is also a
load_and_exit command in that file, which can be used if the user does not want to interact with the data at load time,
but wants the filetype converted to ImpDAR’s .mat for convenience.

load.load(fns_in, channel=1, *args, **kwargs)
Load a list of files of a certain type

Parameters

• filetype (str) – The type of file to load.

• fns (list) – List of files to load

• channel (Receiver channel that the data were recorded on) – This
is primarily for the St. Olaf HF data

Returns RadarDataList – Objects with relevant radar information

Return type list of ~impdar.RadarData (or its subclasses)

load.load_and_exit(fns_in, channel=1, *args, **kwargs)
Load a list of files of a certain type, save them as StODeep mat files, exit

Parameters

• filetype (str) –

4.2. API 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

ImpDAR Documentation, Release 1.0.0

The type of file to load. Options are: ’pe’ (pulse ekko) ‘gssi’ (from sir controller)
‘gprMax’ (synthetics) ‘gecko’ (St Olaf Radar) ‘segy’ (SEG Y) ‘mcords_nc’ (MCoRDS
netcdf) ‘mcords_mat’ (MCoRDS matlab format) ‘mat’ (StODeep matlab format)

• fn (list or str) – List of files to load (or a single file)

• channel (Receiver channel that the data were recorded on) – This
is primarily for the St. Olaf HF data

4.2.5 Processing

This defines generic processing functions to ease calls from executables.

If interacting with the API, most processing steps should probably be called by using methods on RadarData objects,
so see that documentation for most of your needs. However, you may need to concatenate, which is defined separately
because it acts on multiple objects.

While the process and process_and_exit directives can be used, they are generally not as useful as the direct
calls.

impdar.lib.process.concat(radar_data)
Concatenate all radar data input.

Parameters radar_data (list of RadarData) – Objects to concatenate

Returns A single, concatenated output.

Return type RadarData

impdar.lib.process.process(RadarDataList, interp=None, rev=False, vbp=None, hfilt=None, ah-
filt=False, nmo=None, crop=None, hcrop=None, restack=None, de-
noise=None, migrate=None, **kwargs)

Perform one or more processing steps on a list of RadarData .

Parameters

• RadarDataList (list of strs) – The ~impdar.RadarData objects to process

• rev (bool, optional) – Reverse the profile orientation. Default is False.

• vbp (2-tuple, optional) – Vertical bandpass between (vbp1, vbp2) MHz. Default
None (no filtering).

• hfilt (2-tuple, optional) – Horizontal filter subtracting average trace between
(hfilt1, hfilt2). Default is None (no hfilt).

• ahfilt (bool, optional) – Adaptively horizontally filter the data.

• denoise (bool, optional) – denoising filter (only wiener for now).

• migrate (string, optional) – Migrates the data.

Returns processed – If True, we did something, if False we didn’t

Return type bool

impdar.lib.process.process_and_exit(fn, cat=False, filetype=’mat’, **kwargs)
Perform one or more processing steps, save, and exit.

Parameters

• fn (list of strs) – The filename(s) to process.

• cat (bool, optional) – If True, concatenate files before processing rather than run-
ning through each individually.

26 Chapter 4. Contributing

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

ImpDAR Documentation, Release 1.0.0

• filetype (str, optional) – The type of input file. Default is .mat.

• kwargs – These are the processing arguments for process

4.2.6 ImpdarError

exception impdar.lib.ImpdarError.ImpdarError
Used for exceptions caused by something radar-y.

4.3 Executables

ImpDAR has four executables:

impdar is a generic call that can process data, load data, or plot. Using this call, you can perform a number of
processing steps in one go, saving time on loading and saving and saving disk space on not writing intermediate
outputs.

impproc is designed to give greater flexibility and cleaner syntax for processing. It only performs one processing step
at a time, but will thus give you intermediate outputs, by default saved with names indicating the processing performed.

impplot plots data, either as a radargram, as a line plot of power versus depth, or as the return power from a pick. It
can either save the plot or bring it up for interactive panning and zooming.

imppick calls up the interpretation GUI. Some processing can also be done through this GUI.

Contents:

4.3.1 impdar

The main executable for the ImpDAR package.

usage: impdar [-h] {load,proc,plot,convert} ...

Sub-commands:

load

Load data

impdar load [-h] [-channel CHANNEL] [-gps_offset GPS_OFFSET] [-o O]
[--filetype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
{mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_mat,ramac,

→˓bsi,delores,osu,ramac}
fns_in [fns_in ...]

Positional Arguments

filetype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file

4.3. Executables 27

https://docs.python.org/3/library/stdtypes.html#str

ImpDAR Documentation, Release 1.0.0

fns_in File(s) to load

Named Arguments

-channel Receiver channel to load, this is primarily for the St. Olaf HF data.

Default: 1

-gps_offset Offset of GPS and data times for UoA_mat

Default: 0.0

-o Write to this filename

--filetype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file

Default: “mat”

proc

Process data

impdar proc [-h] [-cat] [-vbp VBP VBP] [-hfilt HFILT HFILT] [-ahfilt] [-rev]
[-nmo NMO NMO] [-crop CROP CROP CROP] [-hcrop HCROP HCROP HCROP]
[-restack RESTACK] [-interp INTERP INTERP] [-denoise DENOISE]
[-migrate MIGRATE] [-o O]
fn [fn ...]

Positional Arguments

fn File(s) to process

Named Arguments

-cat Concatenate the files

Default: False

-vbp Bandpass the data vertically at low (MHz) and high (MHz)

-hfilt Remove the average trace (average between hfilt0 and hfilt1)

-ahfilt Adaptive horizontal filtering

Default: False

-rev Reverse profile

Default: False

-nmo Normal moveout correction. First argument is the transmitter-receiver separation.
Second argument is the velocity of the radar wave (in m/s).

-crop Crop the radar data in the travel-time direction. Args are the limit, whether to crop
off [“top”, “bottom”], with limit defined in terms of [“snum”, “twtt”, “depth”]

28 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

-hcrop Crop the radar data in the horizontal. Arguments are the limit, whether to crop
off [“left”, “right], with limit defined in terms of [“tnum”, “dist”]

-restack Restack to this (odd) number of traces

-interp Reinterpolate GPS. First argument is the new spacing, in meters. Second argu-
ment is the filename (csv or mat) with the new GPS data

-denoise Denoising filter (scipy wiener for now)

-migrate Migrate with the indicated routine.

-o Write to this filename

plot

Plot data

impdar plot [-h] [-s] [-yd] [-xd] [-tr TR TR] [-power POWER]
[-spectra SPECTRA SPECTRA] [-o O] [-freq_limit FREQ_LIMIT]
[-window WINDOW] [-scaling SCALING]
fns [fns ...]

Positional Arguments

fns File(s) to plot

Named Arguments

-s Save file (do not plt.show())

Default: False

-yd Plot the depth rather than travel time

Default: False

-xd Plot the dist rather than the trace num

Default: False

-tr Plot the traces in this range (line plot)

-power Input a picked layer number to plot the RMS power for each trace in map view.

-spectra Plot power spectral density across traces of radar profile. Input frequency bounds
(MHz).

-o Write to this filename

-freq_limit Maximum frequeny to plot power spectral density to

-window Type of window function to be used for the singal.periodogram() method

Default: “hanning”

-scaling Whether to plot power spectral density or power spectrum: default is spectrum

Default: “spectrum”

4.3. Executables 29

ImpDAR Documentation, Release 1.0.0

convert

Convert filetype (lossy)

impdar convert [-h]
[-in_fmt {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
[-t_srs T_SRS]
fns_in [fns_in ...] {shp,mat,segy}

Positional Arguments

fns_in File(s) to convert

out_fmt Possible choices: shp, mat, segy

Named Arguments

-in_fmt Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Input format type. If none, guess from extension, but be warned, we are bad at
guessing!

-t_srs Target spatial reference system (only used if out_fmt==shp). Give as EPSG num-
ber.

Default: 4326

4.3.2 impproc

An executable to perform single processing steps.

This has a lot of convenience in terms of the call since you get more help with commands, more control of arguments,
control over the order in which things are done, etc, but has the disadvantage of requiring a call/load/write for every
step.

You can get a list of commands with impproc -h

For any individual command, you can get more help by running impproc [command] -h.

Examples

A sample workflow might be something like

make directories for the output
mkdir bandpass hfilt nmo

Vertical bandpass from 150-450MHz (loading in the raw data with the -gssi flag)
impproc vbp 150 450 -gssi *.DZT -o bandpass/

do some horizontal filtering on that output
impproc hfilt 1000 2000 bandpass/*.mat -o hfilt

(continues on next page)

30 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

finally do a conversion to the time domain
impproc nmo 10 hfilt/*.mat -o nmo

The same processing steps can be done without separating the output into different folders. At risk of file clutter, the
workflow could be

Vertical bandpass from 150-450MHz (loading in the raw data with the -gssi flag)
impproc vbp 150 450 -gssi *.DZT

do some horizontal filtering on that output
impproc hfilt 1000 2000 *_vbp.mat

finally do a conversion to the time domain
impproc nmo 10 *_hfilt.mat

Outputs are now sitting around with _vbp_hfilt_nmo before the extension

A similar example, with visualization of the outputs, is here.

Usage

usage: impproc [-h]
{hfilt,ahfilt,rev,cat,elev,restack,rgain,agc,vbp,hbp,lp,crop,hcrop,nmo,

→˓interp,geolocate,denoise,migrate}
...

Sub-commands:

hfilt

Horizontally filter the data by subtracting the average trace from a window

impproc hfilt [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
start_trace end_trace fns [fns ...]

Positional Arguments

start_trace First trace of representative subset

end_trace Last trace of representative subset

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

4.3. Executables 31

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

ahfilt

Horizontally filter the data adaptively

impproc ahfilt [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

rev

Reverse the data

impproc rev [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

32 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

cat

Concatenate the data

impproc cat [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

elev

Elevation correct

impproc elev [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

4.3. Executables 33

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

restack

Restack to interval

impproc restack [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
traces fns [fns ...]

Positional Arguments

traces Number of traces to stack. Must be an odd number

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

rgain

Add a range gain

impproc rgain [-h] [-slope SLOPE] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-slope Slope of linear range gain. Default 0.1

Default: 0.1

34 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

agc

Add an automatic gain

impproc agc [-h] [-window WINDOW] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-window Number of samples to average

Default: 50

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

vbp

Vertically bandpass the data

impproc vbp [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
low_MHz high_MHz fns [fns ...]

Positional Arguments

low_MHz Lowest frequency passed (in MHz)

high_MHz Highest frequency passed (in MHz)

fns The files to process

4.3. Executables 35

ImpDAR Documentation, Release 1.0.0

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

hbp

Horizontally bandpass the data

impproc hbp [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
low high fns [fns ...]

Positional Arguments

low Lowest frequency passed (in wavelength)

high Highest frequency passed (in wavelength)

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

lp

Horizontally lowpass the data

impproc lp [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
low fns [fns ...]

Positional Arguments

low Lowest frequency passed (in wavelength)

fns The files to process

36 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

crop

Crop the data in the vertical

impproc crop [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
{top,bottom} {snum,twtt,depth,pretrig} lim fns [fns ...]

Positional Arguments

top_or_bottom Possible choices: top, bottom

Remove from the top or bottom

dimension Possible choices: snum, twtt, depth, pretrig

Set the bound in terms of snum (sample number), twtt (two way travel time in
microseconds), depth (m, calculated using the nmo_depth or a light speed of
1.69e8m/s if it doesn’t, or pretrig (the recorded trigger sample)

lim The cutoff value

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

hcrop

Crop the data in the horizontal

impproc hcrop [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
{left,right} {tnum,dist} lim fns [fns ...]

4.3. Executables 37

ImpDAR Documentation, Release 1.0.0

Positional Arguments

left_or_right Possible choices: left, right

Remove from the left or right

dimension Possible choices: tnum, dist

Set the bound in terms of tnum (trace number, 1 indexed) or dist (distance in km)

lim The cutoff value

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

nmo

Normal move-out correction

impproc nmo [-h] [--uice UICE] [--uair UAIR] [--rho_profile RHO_PROFILE]
[-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
ant_sep fns [fns ...]

Positional Arguments

ant_sep Antenna separation

fns The files to process

Named Arguments

--uice Speed of light in ice in m/s (default 1.69e8)

Default: 169000000.0

--uair Speed of light in air in m/s (default 3.0e8)

Default: 300000000.0

--rho_profile Filename for a depth density profile to correct wave velocity.

-o Output to this file (folder if multiple inputs)

38 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

interp

Reinterpolate GPS

impproc interp [-h] [--gps_fn GPS_FN] [--offset OFFSET] [--minmove MINMOVE]
[--extrapolate] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
spacing fns [fns ...]

Positional Arguments

spacing New spacing of radar traces, in meters

fns The files to process

Named Arguments

--gps_fn CSV or mat file containing the GPS information. .csv and .txt files are assumed to
be csv, .mat are mat. Default is None–use associated (presumably non-precision)
GPS

--offset Offset from GPS time to radar time

Default: 0.0

--minmove Minimum movement to not be stationary

Default: 0.01

--extrapolate Extrapolate GPS data beyond bounds

Default: False

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

geolocate

GPS control

4.3. Executables 39

ImpDAR Documentation, Release 1.0.0

impproc geolocate [-h] [--extrapolate] [--guess] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
gps_fn fns [fns ...]

Positional Arguments

gps_fn CSV or mat file containing the GPS information. .csv and .txt files are assumed to
be csv, .mat are mat. Default is None–use associated (presumably non-precision)
GPS

fns The files to process

Named Arguments

--extrapolate Extrapolate GPS data beyond bounds

Default: False

--guess Guess at offset

Default: False

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

denoise

Denoising filter for the data image

impproc denoise [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
vert_win hor_win fns [fns ...]

Positional Arguments

vert_win Size of filtering window in vertical (number of samples)

hor_win Size of filtering window in horizontal (number of traces)

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

40 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

migrate

Migration

impproc migrate [-h] [--mtype {stolt,kirch,phsh,tk,sumigtk,sustolt,sumigffd}]
[--vel VEL] [--vel_fn VEL_FN] [--nearfield] [--htaper HTAPER]
[--vtaper VTAPER] [--nxpad NXPAD] [--tmig TMIG]
[--verbose VERBOSE] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

--mtype Possible choices: stolt, kirch, phsh, tk, sumigtk, sustolt, sumigffd

Migration routines.

Default: “phsh”

--vel Speed of light in dielectric medium m/s default is for ice, 1.69e8)

Default: 169000000.0

--vel_fn Filename for inupt velocity array. Column 1: velocities, Column 2: z locations,
Column 3: x locations (optional)

--nearfield Boolean for nearfield operator in Kirchhoff migration.

Default: False

--htaper Number of samples for horizontal taper

Default: 100

--vtaper Number of samples for vertical taper

Default: 1000

--nxpad Number of traces to pad with zeros for FFT

Default: 100

--tmig Times for velocity profile

Default: 0

--verbose Print output from SeisUnix migration

Default: 1

4.3. Executables 41

ImpDAR Documentation, Release 1.0.0

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

4.3.3 impplot

The executable syntax is described below, but look to Plotting examples examples for a more useful overview of what
you will get out.

usage: impproc [-h]
{hfilt,ahfilt,rev,cat,elev,restack,rgain,agc,vbp,hbp,lp,crop,hcrop,nmo,

→˓interp,geolocate,denoise,migrate}
...

Sub-commands:

hfilt

Horizontally filter the data by subtracting the average trace from a window

impproc hfilt [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
start_trace end_trace fns [fns ...]

Positional Arguments

start_trace First trace of representative subset

end_trace Last trace of representative subset

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

ahfilt

Horizontally filter the data adaptively

42 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

impproc ahfilt [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

rev

Reverse the data

impproc rev [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

cat

Concatenate the data

4.3. Executables 43

ImpDAR Documentation, Release 1.0.0

impproc cat [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

elev

Elevation correct

impproc elev [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

restack

Restack to interval

44 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

impproc restack [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
traces fns [fns ...]

Positional Arguments

traces Number of traces to stack. Must be an odd number

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

rgain

Add a range gain

impproc rgain [-h] [-slope SLOPE] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-slope Slope of linear range gain. Default 0.1

Default: 0.1

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

4.3. Executables 45

ImpDAR Documentation, Release 1.0.0

agc

Add an automatic gain

impproc agc [-h] [-window WINDOW] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

-window Number of samples to average

Default: 50

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

vbp

Vertically bandpass the data

impproc vbp [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
low_MHz high_MHz fns [fns ...]

Positional Arguments

low_MHz Lowest frequency passed (in MHz)

high_MHz Highest frequency passed (in MHz)

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

46 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Default: “mat”

hbp

Horizontally bandpass the data

impproc hbp [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
low high fns [fns ...]

Positional Arguments

low Lowest frequency passed (in wavelength)

high Highest frequency passed (in wavelength)

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

lp

Horizontally lowpass the data

impproc lp [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
low fns [fns ...]

Positional Arguments

low Lowest frequency passed (in wavelength)

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

4.3. Executables 47

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

crop

Crop the data in the vertical

impproc crop [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
{top,bottom} {snum,twtt,depth,pretrig} lim fns [fns ...]

Positional Arguments

top_or_bottom Possible choices: top, bottom

Remove from the top or bottom

dimension Possible choices: snum, twtt, depth, pretrig

Set the bound in terms of snum (sample number), twtt (two way travel time in
microseconds), depth (m, calculated using the nmo_depth or a light speed of
1.69e8m/s if it doesn’t, or pretrig (the recorded trigger sample)

lim The cutoff value

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

hcrop

Crop the data in the horizontal

impproc hcrop [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
{left,right} {tnum,dist} lim fns [fns ...]

48 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Positional Arguments

left_or_right Possible choices: left, right

Remove from the left or right

dimension Possible choices: tnum, dist

Set the bound in terms of tnum (trace number, 1 indexed) or dist (distance in km)

lim The cutoff value

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

nmo

Normal move-out correction

impproc nmo [-h] [--uice UICE] [--uair UAIR] [--rho_profile RHO_PROFILE]
[-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,UoA_

→˓mat,ramac,bsi,delores,osu,ramac}]
ant_sep fns [fns ...]

Positional Arguments

ant_sep Antenna separation

fns The files to process

Named Arguments

--uice Speed of light in ice in m/s (default 1.69e8)

Default: 169000000.0

--uair Speed of light in air in m/s (default 3.0e8)

Default: 300000000.0

--rho_profile Filename for a depth density profile to correct wave velocity.

-o Output to this file (folder if multiple inputs)

4.3. Executables 49

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

interp

Reinterpolate GPS

impproc interp [-h] [--gps_fn GPS_FN] [--offset OFFSET] [--minmove MINMOVE]
[--extrapolate] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
spacing fns [fns ...]

Positional Arguments

spacing New spacing of radar traces, in meters

fns The files to process

Named Arguments

--gps_fn CSV or mat file containing the GPS information. .csv and .txt files are assumed to
be csv, .mat are mat. Default is None–use associated (presumably non-precision)
GPS

--offset Offset from GPS time to radar time

Default: 0.0

--minmove Minimum movement to not be stationary

Default: 0.01

--extrapolate Extrapolate GPS data beyond bounds

Default: False

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

geolocate

GPS control

50 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

impproc geolocate [-h] [--extrapolate] [--guess] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
gps_fn fns [fns ...]

Positional Arguments

gps_fn CSV or mat file containing the GPS information. .csv and .txt files are assumed to
be csv, .mat are mat. Default is None–use associated (presumably non-precision)
GPS

fns The files to process

Named Arguments

--extrapolate Extrapolate GPS data beyond bounds

Default: False

--guess Guess at offset

Default: False

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

denoise

Denoising filter for the data image

impproc denoise [-h] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
vert_win hor_win fns [fns ...]

Positional Arguments

vert_win Size of filtering window in vertical (number of samples)

hor_win Size of filtering window in horizontal (number of traces)

fns The files to process

Named Arguments

-o Output to this file (folder if multiple inputs)

4.3. Executables 51

ImpDAR Documentation, Release 1.0.0

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

migrate

Migration

impproc migrate [-h] [--mtype {stolt,kirch,phsh,tk,sumigtk,sustolt,sumigffd}]
[--vel VEL] [--vel_fn VEL_FN] [--nearfield] [--htaper HTAPER]
[--vtaper VTAPER] [--nxpad NXPAD] [--tmig TMIG]
[--verbose VERBOSE] [-o O]
[--ftype {mat,pe,gssi,stomat,gprMax,gecko,segy,mcords_mat,mcords_nc,

→˓UoA_mat,ramac,bsi,delores,osu,ramac}]
fns [fns ...]

Positional Arguments

fns The files to process

Named Arguments

--mtype Possible choices: stolt, kirch, phsh, tk, sumigtk, sustolt, sumigffd

Migration routines.

Default: “phsh”

--vel Speed of light in dielectric medium m/s default is for ice, 1.69e8)

Default: 169000000.0

--vel_fn Filename for inupt velocity array. Column 1: velocities, Column 2: z locations,
Column 3: x locations (optional)

--nearfield Boolean for nearfield operator in Kirchhoff migration.

Default: False

--htaper Number of samples for horizontal taper

Default: 100

--vtaper Number of samples for vertical taper

Default: 1000

--nxpad Number of traces to pad with zeros for FFT

Default: 100

--tmig Times for velocity profile

Default: 0

--verbose Print output from SeisUnix migration

Default: 1

52 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

-o Output to this file (folder if multiple inputs)

--ftype Possible choices: mat, pe, gssi, stomat, gprMax, gecko, segy, mcords_mat,
mcords_nc, UoA_mat, ramac, bsi, delores, osu, ramac

Type of file to load (default ImpDAR mat)

Default: “mat”

4.3.4 imppick

Command-line call

After calling imppick to bring up the GUI, things should be pretty intuitive, but navigation may seem a bit odd at first.
Here is the basic view of the picker on a Mac:

4.3. Executables 53

ImpDAR Documentation, Release 1.0.0

54 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

In this profile, I’ve picked some layers already. The active pick is highlighted in magenta (or rather the top and bottom
of the packet are in magenta, and the middle of the packet is green, but the middle is not visible at this zoom). Other
picks are in yellow, surrounding a blue central peak. On the left side are most of the controls for when do the picking.
We’ll go through the buttons on the left, from top to bottom, to get an idea of how picking proceeds.

Menus

Modes

The mode is displayed in a button in the upper left. We have two modes: select mode, for deciding what to modify,
and edit mode, to change the picks. Neither mode works when the matplotlib pan/zoom toolbar is active (shown
below). Reclick the zoom or pan button so it is unselected if you want to use the ImpDAR functions.

Select

Select mode allows us to choose which of the picks to add to. This is used to go back to old picks that already exist
and modify them. If there are no picks yet, or if we want a new pick, we can go straight to edit mode.

Edit

Edit mode is where you will spend most of your time. In edit mode, you can modify the existing picks, either deleting
from the, renumbering them, or adding to them.

Pick Options

This is where we control things about how the picking algorithm operates.

4.3. Executables 55

ImpDAR Documentation, Release 1.0.0

Pick Number

Changing this integer will change the number associated with this pick. This changes nothing about how the data are
stored (i.e. you can choose pick 999 without making a big empty matrix waiting for picks 1-998), and only affects
wheat we call it (and it will be exported with the number of your choice). By convention, StODeep used 99 for the bed
pick. Trying to set the number to something that is already used is not allowed–ImpDAR will increment to an unused
pick. If you want to switch the numbering of two picks, you should set one to something unused, move the second to
the first, then the first into the second’s old place.

Autopick

Right now, this checkbox is inactive. If we can successfully implement a decent autopicking algorithm, this will get
turned on. For now, if you want to try to make ImpDAR do the work for you, try picking the leftmost and the rightmost
trace.

Frequency

This should, in general, be the frequency of the radar system. It sets the wavelet size that we try to correlate with each
radar trace when picking. You probably want to update this once at the start of picking, then leave it alone.

Polarity

Choose whether you are picking layers that go +-+ or -+-. In a grayscale colorbar, these BWB and WBW respectively.

New Pick

After we have selected our picking options, we probably want to do some picking. Clicking the “New pick” button
adds a pick with an unused pick number (you can modify it at any time though).

View Options

These options control aspects of coloring the radargram; zooming and panning are handled directly by matplotlib in
the bottom toolbar.

Color limits

The color limits are fairly self explanatory. Change this to increase or decrease contrast.

Color map

This is again self explanatory. Change the colormap as desired to improve the visualization. CEGSIC is a custom map
intended for radar data and developed at St. Olaf. All other maps just link to matplotlib.

56 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Workflow

Load intersections

Once the profile is loaded, before doing any picking or numbering, you likely want to have the context of any other
profiles that you have already picked. This is done through pick > load crossprofile. Loading the intersections should
give you a string of pearls with pick numbers in each, with the dots located at where the other profile hits this one.
The loading is pretty dumb, so if you have multiple intersections only the one where the traces in the two profiles are
closest will load. Eventually this might become more clever, but the current implementation covers most use cases.
You can load multiple profiles, so if you are really having a need for multiple intersections, just split the other file.

4.3. Executables 57

ImpDAR Documentation, Release 1.0.0

58 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Picking

To begin picking, make sure you are in “edit” mode and that neither pan nor zoom is selected. If there are already
some picks on the profile, you first will want to create a new pick. Picking a section must be done from left to right.
You can skip portions by “NaN picking”, then continue to the right and go back and fill in gaps later to fill in gaps. To
pick, start with a left click on the layer at the left edge of the profile. After you click a second time, you should start
to see the layer plotted. You should not try to pick too far away–ImpDAR will search for a reflection with the desired
polarity within a certain distance, determined by the frequency, of the line connecting your clicks. If you try to make
it pick through too much variability, it can miss peaks and troughs.

4.3. Executables 59

ImpDAR Documentation, Release 1.0.0

60 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Now, let’s say you come to a portion of the profile that you feel is ambiguous and you want to skip it. Pick up to the
left side of it, then click on the right side while holding down “n”. Continue clicking to the right as normal, and you
will see that the portion left of where you clicked with “n”, i.e. where you NaN picked, is blank.

4.3. Executables 61

ImpDAR Documentation, Release 1.0.0

62 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Now suppose you screwed up, like in the image above where it looks like you stepped down to a deeper layer by
mistake, so now you want to backtrack. Right clicking will delete all picks left of the last click (generally the right end
of the profile) and right of the right click.

4.3. Executables 63

ImpDAR Documentation, Release 1.0.0

64 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

We can also go back and edit a previous pick, moving it up, say. We can also delete picks in the middle of a profile by
left clicking at the right edge of the span we are deleting, then right click at the left edge.

Saving

After picking, you need to save your picks. When you close the window, you will be prompted to save. You can also
save at any time through the file menu in the upper left. If you just want to save an image of the figure, you can use
the disk icon in the matplotlib toolbar or you can use the file > save figure from the menus. You can also export the
picks as a csv file (no gdal required) or as a shapefile (needs gdal) from the pick > export menu.

4.4 Examples

4.4.1 Jupyter notebooks

We have set up several Jupyter notebooks so that you can interactively run through code.

The code and output can be seen through this website. To truly run the code and modify it, you can get the source
repository here. Some of the data source files are a bit large (~100 Mb) to give realistic examples, so this repository is
separated from the main code.

ImpDAR Getting Started Tutorial

Welcome to ImpDAR! This is an impulse radar processor primarily targeted toward ice-penetrating radar systems.
However, the potential applications of this software are much more widespread. Our goal is to provide an alternative
to the expensive commercial software that would be purchased with a ground-penetrating radar system from a company
such as GSSI or Sensors and Software. We provide all of the processing tools that are needed to move from a raw
data file to an interpretable image of the subsurface. Moreover, our software is agnostic to the system used, so we can
import data from a variety of different ground-penetrating radar systems and interact with the data in the exact same
way.

If you have not yet installed ImpDAR on your computer, you can go to our github page (https://github.com/dlilien/
ImpDAR) to download or clone the repository. For those less familiar with Python programming, take a look at our
Read the Docs page for help (https://impdar.readthedocs.io/en/latest/).

The preferred pathway for interacting with ImpDAR is through the terminal. However, our API allows relatively
easy access through other programs as well. Here, we want to walk you through the processing flow using a Jupyter
Notebook, where all of the processing functions can be called through Python. No prior knowledge of Python is
necessary.

Import the necessary libraries

The very first thing to do with any Python script is to import all of the libraries that will be used. These will allow us
to call functions that help with loading scripts, some numerical issues, and plotting. Knowing exactly what each of
these are is not important to understanding the radar processing flow.

[1]: # We get annoying warnings about backends that are safe to ignore
import warnings
warnings.filterwarnings('ignore')

Standard Python Libraries
import numpy as np

(continues on next page)

4.4. Examples 65

https://github.com/Jakidxav/ImpDAR_tutorials
https://github.com/dlilien/ImpDAR
https://github.com/dlilien/ImpDAR
https://impdar.readthedocs.io/en/latest/

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

import matplotlib.pyplot as plt
plt.rcParams['figure.dpi'] = 300
%config InlineBackend.figure_format = 'retina'

Load the raw data

With the standard libraries loaded, we can now look at some radar data. This particular radargram was collected at the
Northeast Greenland Ice Stream (Christianson et al., 2014). We discuss more of the details about exactly what we are
looking at when we get to a more interpretable image.

[2]: # To look through data files we use glob which is a library
that finds all the file names matching our description
import glob
files = glob.glob('data_in/*[!.gps]')

Impdar's loading function
from impdar.lib import load
dat = load.load_olaf.load_olaf(files)
save the loaded data as a .mat file
dat.save('test_data_raw.mat')

Impdar's plotting function
from impdar.lib.plot import plot_traces, plot_radargram
%matplotlib inline
plot_radargram(dat)

[2]: (<Figure size 864x576 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910f0cd6a0>)

66 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Raw radar data are a mess. We can’t really see anything meaningful here.

In order to illustrate the first processing step, let’s plot a single ‘trace’. A radar trace is one collection of voltages
measured by the oscilloscope through time. The total time for collection in this case is ~50 microseconds.

[3]: ### Try changing the trace index to see whether they are similar or different ###
Make sure that you understand the relationship between this figure and above

Reload in case a lower cell gets run
dat = load.load_olaf.load_olaf(files)

Plot a single trace, where tr is the trace number in the above image
plot_traces(dat,tr=100)

[3]: (<Figure size 576x864 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910c8ff978>)

4.4. Examples 67

ImpDAR Documentation, Release 1.0.0

Bandpass filter

The first big processing step is to isolate the frequency band of interest. The radar antennas set this frequency. In our
case, the antennas are ~20 m long (frequency of 3 MHz) so we want to allow the frequency band from 1-5 MHz pass
while damping all other frequencies (i.e. bandpass filter).

This filter works on all the traces simultaneously, but to illustrate its effect we will plot the single trace again.

68 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

[4]: # Do the vertical bandpass filter from 1-5 MHz
dat.vertical_band_pass(1,5)
save again
dat.save('./test_data_bandpassed.mat')

Plot a single trace
plot_traces(dat, tr=100)

Bandpassing from 1.0 to 5.0 MHz...
Bandpass filter complete.

[4]: (<Figure size 576x864 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910c8ff668>)

4.4. Examples 69

ImpDAR Documentation, Release 1.0.0

Now plot the entire image again.

[5]: # Plot all the bandpassed data
plot_radargram(dat)

[5]: (<Figure size 864x576 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910c7fd1d0>)

70 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Geometric Corrections

Now that the data look like something useful, we can do a few more corrections to make it more physical. Two
geometric corrections allow us to look at the image more like something under the surface instead of in this two-
way travel time dimension that we have been using. First we crop out the ‘pretrigger’ which is data collected by the
receiver before the radar pulse is actually transmitted. Second we do a ‘normal move-out’ correction (nmo) which
corrects for the separation distance between the receiving and transmitting antennas. We have an additional tutorial
for more details about the nmo filter in the case of a variable velocity (e.g. in snow or firn). After the nmo correction,
we can more responsibly plot the y axis in ‘depth’ rather than ‘travel time’ by adding ‘yd=True’ in the plot function.

[6]: # Crop the pretrigger out from the top of each trace
dat.crop(0.,dimension='pretrig')
Do the normal move-out correction with antenna spacing 160 m
dat.nmo(160)

Save and plot
dat.save('test_data_nmo.mat')
plot_radargram(dat, ydat='depth')

Vertical samples reduced to subset [512:10752] of original

[6]: (<Figure size 864x576 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910c7daa90>)

4.4. Examples 71

ImpDAR Documentation, Release 1.0.0

Georeferencing and Interpolation

Up to now, everything has been plotted as ‘trace number’ in the horizontal. In reality though, we want to know where
in space each trace was measured. Typically, these data are collected with some kind of GPS either internal to the
system itself, or attached as an external antenna.

In cases where the GPS data are available, ImpDAR can load the data in, assigning lat/long to each trace. Then, the
coordinates can be projected into x/y and a distance vector created for distance traversed along the profile. The final
step is to interpolate the image onto equal trace spacing. All this is handled in the ‘interp’ function as seen below.

[7]: # Interpolate onto equal trace spacing of 5 m
from impdar.lib.gpslib import interp
interp([dat],5)

Save and plot the interpolated image
dat.save('test_data_interp.mat')
plot_radargram(dat,ydat='depth',xdat='dist')

[7]: (<Figure size 864x576 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910c790be0>)

72 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Denoise

Denoising is done with a 2-dimensional Wiener filter. Inputs are the number of pixels to include in the filter (vertical,
horizontal).

**Note: After denoising the image, the wave amplitude no longer has a physical meaning. For amplitude analysis,
denoising filters should be avoided.

[8]: dat.denoise(1,15)

Save and plot
dat.save('test_data_denoise.mat')
plot_radargram(dat,ydat='depth',xdat='dist')

[8]: (<Figure size 864x576 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910c720748>)

4.4. Examples 73

ImpDAR Documentation, Release 1.0.0

Linear Range Gain

Sometimes, when the data are very low amplitude near the bed, we want to boost the signal so that we can see it. The
simplest way to do this is with a linear range gain (i.e. multiply each trace by a ramp that increases toward the bottom).

**Note: As with the denoising filter above, amplitude interpretations should not be done after this type of filter has
been used.

[9]: dat.rangegain(0.05)

Save and plot
dat.save('test_data_gain.mat')
plot_radargram(dat,ydat='depth', xdat='dist')

[9]: (<Figure size 864x576 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x7f910c6e0d30>)

74 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

ImpDAR NMO Filter Tutorial (Variable Velocity)

The normal move-out filter corrects for source-receiver antenna separation by finding the legs of the triangular travel
path. Within ImpDAR, this filter also converts from two-way-travel-time to depth. Both the filter and the depth
conversion account for variable wave speed when requested.

Here, we walk through an example using ground-based snow radar from South Cascade Glacier. Density cores drilled
in the snowpack are used to constrain the wave speed.

[1]: # We get annoying warnings about backends that are safe to ignore
import warnings
warnings.filterwarnings('ignore')

Load standard libraries
import numpy as np
import matplotlib.pyplot as plt
from impdar.lib import load
To make the plots look nicer
plt.rcParams['figure.dpi'] = 300
%config InlineBackend.figure_format = 'retina'

Load the raw data (PulseEKKO format) and do some initial processecing steps (vertical bandpass and pretrigger crop)
before considering the nmo filter.

[2]: # Load the Pulse EKKO data
dat = load.load('pe',['data/LINE01.DT1'])[0]
Bandpass filter

(continues on next page)

4.4. Examples 75

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

dat.vertical_band_pass(250,750)
Crop the pretrigger
dat.crop(0.,dimension='pretrig',rezero=True)

Plot the
from impdar.lib.plot import plot
%matplotlib inline
dat.save('./scg_data_raw.mat')
plot('./scg_data_raw.mat')

Bandpassing from 250.0 to 750.0 MHz...
Bandpass filter complete.
Vertical samples reduced to subset [317:3000] of original

Get permittivity and wave-speed profile

The speed of light in ice is density-dependent, it travels faster in lower density snow/firn/ice which makes sense
because that is closer to air. ImpDAR has some functionality to convert from snow/firn density to permittivity (wave
speed). Here, we load the density profile measured at South Cascade Glacier and convert that to permittivity and
subsequently to wave speed.

At every reflector depth for the correction, the nmo filter uses a root-mean-square wave speed to calculate the time
between the two antennas. This is one leg of the triangle, the recorded time is the hypoteneuse, and the second leg is
the vertical time that we really want.

76 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

[3]: # load the density-to-permittivity function from ImpDAR
from impdar.lib.permittivity_models import firn_permittivity

Load data from the density core at South Cascade Glacier
rho_profile_data = np.genfromtxt('2018_density_profile.csv',delimiter=',')
profile_depth = rho_profile_data[:,0]
profile_rho = rho_profile_data[:,1]
speed of light in vacuum
c = 300.
convert density to profile velocity
profile_vel = c/np.sqrt(np.real(firn_permittivity(profile_rho)))

Plot a figure to show density, permittivity, and velocity profiles
plt.figure(figsize=(8,4))

ax1 = plt.subplot(131)
plt.ylabel('Depth (m)')
plt.xlabel('Density (kg/m3)')
plt.plot(profile_rho,profile_depth,'k')
plt.ylim(max(profile_depth),0)

ax2 = plt.subplot(132)
plt.xlabel('Permittivity')
plt.plot(firn_permittivity(profile_rho),profile_depth,'k')
plt.ylim(max(profile_depth),0)

ax3 = plt.subplot(133)
plt.xlabel('Velocity (m/μsec)')
plt.plot(profile_vel,profile_depth,'k')
plt.ylim(max(profile_depth),0)

plt.tight_layout()
plt.draw()

/Users/dlilien/anaconda3/lib/python3.7/site-packages/numpy/core/_asarray.py:85:
→˓ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)

4.4. Examples 77

ImpDAR Documentation, Release 1.0.0

NMO Correction

Finally, do the nmo correction. This correction stretches samples near the surface, so a 1-dimensional interpolation is
done afterward to get equal depth sampling.

You will notice that the corrected times are longer than the uncorrected times. This is because the raw times are
measured at the reciever. Really though, we need the times relative to the transmit pulse for the correction. The time
for the initial pulse to get to the antennae is added to the measured time to get the transmitted time and that is corrected
to get the vertical leg of the triangle (the final nmo time).

[4]: # Plot a figure before and after the correction
plt.figure(figsize=(8,6))

ax1 = plt.subplot(221)
ax1.plot(dat.travel_time,'k',label='Uncorrected')
plt.xlabel('Sample Number')
plt.ylabel('Travel Time (μs)')
ax2 = plt.subplot(222)
ax2.plot(dat.travel_time/2.*169,'k')
plt.xlabel('Sample Number')
plt.ylabel('Depth (m)')

ax3 = plt.subplot(223)
plt.plot(dat.data[:,400],dat.travel_time,'k',lw=0.5)
plt.xlim(-100,100)
plt.ylim(0.32,0.0)
plt.ylabel('Travel Time (μs)')
plt.xlabel('Amplitude')
plt.title('Uncorrected')

NMO correction
10 m is an overestimate of the antenna separation in this case
but it is useful to understand what is going on
dat.nmo(10.,rho_profile='2018_density_profile.csv')

ax1.plot(dat.travel_time,'k:',label='Corrected')
ax1.legend()
ax2.plot(dat.nmo_depth,'k:')

ax4 = plt.subplot(224)
plt.plot(dat.data[:,400],dat.travel_time,'k',lw=0.5)
plt.xlim(-100,100)
plt.ylim(0.32,0.0)
plt.ylabel('Travel Time (μs)')
plt.xlabel('Amplitude')
plt.title('Corrected')

plt.tight_layout()
plt.show()

/Users/dlilien/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3257:
→˓RuntimeWarning: Mean of empty slice.
out=out, **kwargs)

/Users/dlilien/anaconda3/lib/python3.7/site-packages/numpy/core/_methods.py:161:
→˓RuntimeWarning: invalid value encountered in double_scalars (continues on next page)

78 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

ret = ret.dtype.type(ret / rcount)
/Users/dlilien/work/sw/impdar/impdar/impdar/lib/RadarData/_RadarDataProcessing.py:186:
→˓ RuntimeWarning: invalid value encountered in sqrt
return abs(np.sqrt((t/2.*u_rms)**2.-ant_sep**2.)-d_in)

[]:

ImpDAR Migration Tutorial

This notebook functions as a sort of tutorial for the migration routines currently implemented in our geophysical
processing toolkit for impulse radar (ImpDAR). First, I review a bit of the background on what migration is and why
we need to use it to properly interpret geophysical datasets. I then describe the main groups of migration routines by
stepping through a synthetic example, migrating the dataset with each method. I discuss the strengths and weaknesses
for each as they come up as well as why one method may be chosen over another in a given case. Finally, I implement
an actual data example from Hercules Dome.

Much of this material, including the theory but also the algorithms themselves, is taken straight from the textbooks
(i.e. Yilmaz, 2001; Sheriff and Geldart, 1995) as well as some of the primary literature (cited in line below).

What is Migration?

The goal of migration is to transform a geophysical dataset into an image that accurately represents the subsurface
stratigraphy. Migration is a mathematical transformation in which geophysical events (timing of wave return) are
re-located to where the event (the reflection) occurred in the subsurface rather than the location that it was recorded at

4.4. Examples 79

ImpDAR Documentation, Release 1.0.0

the surface. Because off-nadir information intrudes into each trace, the image must be migrated as a whole to describe
the true reflector geometry. Migration adjusts the angle of dipping reflectors, shortens and moves reflectors updip,
unravels bowties, and most generally collapses diffractions.

The migration problem is illustrated in the image above. Dipping reflectors are imaged by an off-nadir (‘apparent’)
reflection. The ray path of the apparent reflection is not the same as the depth of the reflector directly below the source.
The migrator’s equation is a simple analytic way to adjust the angle of a dipping reflector,

tan(𝜉𝑎) = sin(𝜉) (4.1)

where 𝜉 is the true reflector dip and 𝜉𝑎 is the apparent dip shown in the unmigrated image. While this equation
is useful, it does not provide the full capability of migrating a full geophysical image. To do that, I explore a few
different methods below.

As a note: migration typically assumes coincident source and receiver, meaning that this processing step should be
carried out after any stacking or move-out corrections.

Migration methods outlined below:

• Diffraction Stack Migration (i.e. Kirchhoff)

• Frequency-Wavenumber Migration (e.g. Stolt, Gazdag, etc.)

• Finite-Difference Migration

• SeisUnix Migration Routines (ImpDAR converts to .segy, does the migration in SU, then converts back)

80 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Synthetic Example

Here, I create a synthetic domain to use as an example for the ImpDAR migration routines. For this case, the per-
mittivity is elevated (𝜖𝑟 = 12 inside and 3.2 outside) within the dark blue box in the image below. Loading this
domain into gprmax (a finite-difference time-domain modeling software), I simulate a common offset radar survey
over the box with the output as a synthetic radargram. The source is a 3-MHz wave from a Hertzian Dipole antenna.
Source-receiver antenna separation is 40 m, and the step size between traces is 4 m.

[1]: # We get annoying warnings about backends that are safe to ignore
import warnings
warnings.filterwarnings('ignore')

Load the synthetic data
from impdar.lib import load
import numpy as np
dat = load.load('mat','data/synthetic_radargram.mat')[0]

Plot
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(dat.data,cmap='Greys',aspect='auto',vmin=-1,vmax=1,

extent=[min(dat.dist),max(dat.dist),max(dat.travel_time)*169/2,min(dat.
→˓travel_time)*169/2.]);
plt.xlabel('m');
plt.ylabel('Time (μ sec)');

This synthetic image illustrates why we need to migrate. There are large hyperbola that extend away from the actual
location of the box in both horizontal directions. These hyperbola, or diffraction curves, do not accurately represent
the subsurface stratigraphy, they are only a result of imaging the box from the side as an off-nadir reflector.

As a note: The domian is slightly different because gprMax needs some room around the edges for a ‘perfectly matched
layer’ boundary condition.

1) Diffraction-Stack Migration – ‘Kirchhoff’

The first migration method that I use here is the most direct to explain conceptually. Originally (~1920’s), geophysical
datesets were migrated by hand, and this method follows the logic used then. The energy along each diffraction
curve is summed and placed at the apex of the curve (Hagedoorn, 1954). The diffraction curves are expected to be

4.4. Examples 81

ImpDAR Documentation, Release 1.0.0

hyperbolic (in a constant velocity medium they will be), so here we iterate through each point of the image, looking
for a hyperbolic diffraction curve and integrating the power along it.

[2]: # Reload the unmigrated data
dat = load.load('mat','data/synthetic_radargram.mat')[0]

Migrate
dat.migrate(mtype='kirch');

Plot
plt.imshow(dat.data,cmap='Greys',aspect='auto',vmin=-.25,vmax=.25,

extent=[min(dat.dist),max(dat.dist),max(dat.travel_time),min(dat.travel_
→˓time)]);
plt.xlabel('m');
plt.ylabel('Time (μ sec)');

Kirchhoff Migration (diffraction summation) of 85x1598 matrix
Kirchhoff Migration of 85x1598 matrix complete in 0.14 seconds

Now we can see the box in its original location (i.e. ~200-300 lateral distance and ~0.5-1.0 𝜇s). This method seems
to work, but it is slow (even for this small synthetic dataset) and it ‘over migrates’ through much of the domain as can
be seen by the upward facing hyperbola around the edges and below the box.

Summary of Kirchhoff Migration: - Strengths - Conceptually simple. - Migrates steeply dipping reflectors. - Weak-
nesses - Slow. - Over migrates. - No lateral velocity variation.

2) Frequency-Wavenumber Migration

Migration is commonly done in the frequency domain. In this case, the transformation is one from vertical frequency
(𝜔𝑧) to vertical wavenumber (𝑘𝑧). This transformation is done in the frequency domain, so a 2-D Fourier transform is
used in these methods. There are many such migration routines; here I highlight a couple popular ones.

2a) Stolt Migration (Stolt, 1978)

This is the first and probably the simplest of the frequency-wavenumber migration routines. It is done over the entire
domain simultaneously, so it requires the assumption of a constant velocity throughout. The transformation done here

82 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

is

𝑃 (𝑥, 𝑧, 𝑡 = 0) =

∫︁ ∫︁ [︃
𝑣

2

𝑘𝑧√︀
𝑘2𝑥 + 𝑘2𝑧

]︃
𝑃
(︁
𝑘𝑥, 0, 𝑣/2

√︀
𝑘2𝑥 + 𝑘2𝑧

)︁
𝑒−𝑖𝑘𝑥𝑥−𝑖𝑘𝑧𝑧𝑑𝑘𝑥𝑑𝑘𝑧

where an interpolation is done from 𝜔𝑧 to 𝑘𝑧 in frequency-space.

[3]: # Reload the unmigrated data
dat = load.load('mat','data/synthetic_radargram.mat')[0]
twtt = dat.travel_time

Migrate
dat.migrate(mtype='stolt',htaper=10,vtaper=20);

Plot
plt.imshow(dat.data,cmap='Greys',aspect='auto',vmin=-1,vmax=1,

extent=[min(dat.dist),max(dat.dist),max(twtt),min(twtt)]);
plt.xlabel('m');
plt.ylabel('Time (μ sec)');

Stolt Migration (f-k migration) of 85x1598 matrix
Interpolating from temporal frequency (ws) to vertical wavenumber (kz):
Interpolating:
0 MHz, 53 MHz, 106 MHz, 159 MHz, 212 MHz, 265 MHz, 318 MHz, 371 MHz, Rescaling TWTT

Stolt Migration of 85x799 matrix complete in 3.12 seconds

Stolt migration is great in places where the velocity is known to be constant. It is quite a bit faster than the other
routines. Here though, we need to be careful about migrating power in from the edges of the domain, as can be seen in
the lower corners above. For this reason, we apply a linear taper to the data so that the Fast Fourier Transform being
used does not instantaneously switch from data to zeros around the edges.

Summary of Stolt Migration:

• Strengths

– Fast.

– Resolves steeply dipping layers

• Weaknesses

– Constant velocity.

4.4. Examples 83

ImpDAR Documentation, Release 1.0.0

2b) Phase-Shift Migration (Gazdag, 1978)

This second frequency wavenumber migration routines is actually a set of a few. A phase-shifting operator $e^{-ik_z
z} is applied at each z-step in downward continuation. These methods are advantageous in that they allow variable
velocity as one steps down. Generally, this only allows vertical velocity variation (which I explore here) but there is
also a case which accomadates lateral velocity variation (phase-shift plus interpolation) which I will not describe here.

[4]: # Reload the unmigrated data
dat = load.load('mat','data/synthetic_radargram.mat')[0]

from impdar.lib.migrationlib.mig_python import getVelocityProfile
import numpy as np

create an artificial velocity-depth profile
mean_v = 169e6
z = dat.travel_time*1e-6*mean_v
v = 10e6*np.sin(2.*np.pi*z/100.) + mean_v
vels_in = np.transpose([v,z])

save velocity profile for migration below
np.savetxt('Phsh_vel_profile.txt',vels_in)

Use the ImpDAR command to get the interpolated velocity profile
dependent on travel time instead of depth
vmig = getVelocityProfile(dat,vels_in)

Interpolating the velocity profile.
Velocity profile finished in 0.00 seconds.

[5]: # Plot
ax1 = plt.subplot(211);
plt.plot(z,v);
plt.ylabel('Velocity (m/s)');
plt.xlabel('Depth (m)');
ax1 = plt.subplot(212);
plt.plot(dat.travel_time,vmig);
plt.ylabel('Velocity (m/s)');
plt.xlabel('Travel Time (μ sec)');
plt.tight_layout();

84 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

[6]: # Migrate
dat.migrate(mtype='phsh',htaper=20,vtaper=5,vel_fn='Phsh_vel_profile.txt');

Plot
plt.imshow(dat.data,cmap='Greys',aspect='auto',vmin=-1,vmax=1,

extent=[min(dat.dist),max(dat.dist),max(dat.travel_time),min(dat.travel_
→˓time)]);
plt.xlabel('m');
plt.ylabel('Time (μ sec)');

Phase-Shift Migration of 85x1598 matrix
Velocities loaded from Phsh_vel_profile.txt.
Interpolating the velocity profile.
Velocity profile finished in 0.00 seconds.
1-D velocity structure, Gazdag Migration
Velocities (m/s): %.2e [1.69000000e+08 1.69125225e+08 1.69250429e+08 ... 1.
→˓78019586e+08
1.78072954e+08 1.78124899e+08]

Depths (m): [0.00000000e+00 1.99306291e-01 3.98612583e-01 ... 3.17893535e+02
3.18092841e+02 3.18292147e+02]

Travel Times (μ sec): [0.00000000e+00 1.17932717e-03 2.35865434e-03 ... 1.
→˓88102683e+00
1.88220616e+00 1.88338549e+00]

Time 0.00e+00, Time 1.18e-07, Time 2.36e-07, Time 3.54e-07, Time 4.72e-07, Time 5.90e-
→˓07, Time 7.08e-07, Time 8.26e-07, Time 9.43e-07, Time 1.06e-06, Time 1.18e-06, Time
→˓1.30e-06, Time 1.42e-06, Time 1.53e-06, Time 1.65e-06, Time 1.77e-06,
Phase-Shift Migration of 85x1598 matrix complete in 90.70 seconds

4.4. Examples 85

ImpDAR Documentation, Release 1.0.0

Much like the result from Kirchhoff migration, we see upward dipping ‘smileys’ in this migrated image.

Summary of Phase-Shift Migration:

• Strengths

– Accomodates velocity variation (particularly appropriate for vertical variations, i.e. in snow or similar).

• Weaknesses

– Maximum dip angle.

3) Finite-Difference Migration

This is a full waveform modeling that essentially runs the arrow of time backward in order to map the geophysical
event into an actual reflection location. The beginnings of this method are implemented in ImpDAR, but we have not
fully executed this script yet. Because of computational expense, this should probably be written in a high-performance
language instead of python. We could do this ourselves, but SeisUnix has already done it (likely better than we would).

4) SeisUnix Migration Routines

There are many migration routines implemented in SeisUnix. I have no desire to replicate the work that they have
done, but I wrote something into ImpDAR that allows the user to easily convert their data to .segy, migrate with
SeisUnix, then convert back, all in a kind of black box fashion with only one command.

References

Yilmaz (2001). Seismic Data Processing.

Sherrif and Geldart (1995). Exploration Seismology.

Hagedorn (1954). Seismic Imaging Migration.

Stolt (1978). Migration by Fourier Transform.

Gazdag (1978). Wave Equation Migration with the Phase-Shift Method.

86 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

ImpDAR ApRES Tutorial

This is an overview of the ApRES functions implemented in ImpDAR. ApRES (Autonomous phase-sensitive Radio
Echo Sounder) is a radar system designed to measure vertical ice motion using phase offset (Nicholls et al., 2015). The
Python functions in ImpDAR were rewritten from a series of MATLAB scripts (Brennan et al., 2013) (https://discovery.
ucl.ac.uk/id/eprint/1425855/1/Brennan_IET-RSN.2013.0053.pdf). The main functionality includes: - loading the data
files into an ImpDAR-style .mat file - pulse compression and range conversion - chirp stacking - uncertainty - phase
coherence

We overview each of these below.

[1]: # First import the necessary libraries
import numpy as np
import matplotlib.pyplot as plt

Import the impdar functions that will be needed
import impdar
from impdar.lib.ApresData.load_apres import load_apres
from impdar.lib.ApresData._ApresDataProcessing import apres_range,stacking,
→˓phase2range,phase_uncertainty,range_diff

Plot the data inline instead of with qt5
%matplotlib inline

Take a look at the data file

ApRES data files are binary, so we need to read them in with the load_apres function.

[2]: # Load an example file to look at the settings
fname = ['./data/DATA2019-01-01-0337.DAT']
apres_data = load_apres(fname)

print('### File Header ###: \n\n')
for arg in vars(apres_data.header):

if arg != 'header_string':
print(arg,': ', vars(apres_data.header)[arg])

print('\n\n\n\n\n\n ### File Data ###: \n\n')
for arg in vars(apres_data):

print(arg,': ', vars(apres_data)[arg])

File Header ###:

fsysclk : 1000000000.0
fs : 40000.0
fn : ./data/DATA2019-01-01-0337.DAT
file_format : 5
noDwellHigh : 1
noDwellLow : 0
f0 : 199999999.95343387
f_stop : 399999999.90686774
ramp_up_step : 5000.03807246685
ramp_down_step : 5000.03807246685
tstep_up : 2.5e-05
tstep_down : 2.5e-05

(continues on next page)

4.4. Examples 87

https://discovery.ucl.ac.uk/id/eprint/1425855/1/Brennan_IET-RSN.2013.0053.pdf
https://discovery.ucl.ac.uk/id/eprint/1425855/1/Brennan_IET-RSN.2013.0053.pdf

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

snum : 40000
nsteps_DDS : 40000
chirp_length : 1
chirp_grad : 1256646630.09049
nchirp_samples : 40000
ramp_dir : up
n_attenuators : 1
attenuator1 : [20]
attenuator2 : [-4]
tx_ant : [1]
rx_ant : [1]
f1 : 400001522.8521079
bandwidth : 200001522.898674
fc : 300000761.4027709
er : 3.18
ci : 168231646.22761327
lambdac : 0.5607707308507499

File Data ###:

snum : 40000
cnum : 100
bnum : 1
data : [[[0.09815216 1.24504089 1.23912811 ... 1.42715454 1.4263916 1.42673492]

[1.43409729 1.26480103 1.27113342 ... 1.40258789 1.40041351 1.40285492]
[1.41525269 1.2676239 1.28131866 ... 1.42040253 1.41937256 1.41994476]
...
[1.42852783 1.23825073 1.23447418 ... 1.41857147 1.41765594 1.41590118]
[1.42887115 1.26731873 1.27227783 ... 1.42238617 1.42234802 1.42063141]
[1.4315033 1.25923157 1.27105713 ... 1.41998291 1.42112732 1.42002106]]]

dt : 2.5e-05
decday : [737436.]
lat : None
long : None
chirp_num : [[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99]]

chirp_att : [[20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j 20.-4.j
20.-4.j]]

(continues on next page)

88 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

chirp_time : [[737435.99998104 737436. 737436.00001896 737436.00003793
737436.00005689 737436.00007585 737436.00009481 737436.00011378
737436.00013274 737436.0001517 737436.00017067 737436.00018963
737436.00020859 737436.00022756 737436.00024652 737436.00026548
737436.00028444 737436.00030341 737436.00032237 737436.00034133
737436.0003603 737436.00037926 737436.00039822 737436.00041719
737436.00043615 737436.00045511 737436.00047407 737436.00049304
737436.000512 737436.00053096 737436.00054993 737436.00056889
737436.00058785 737436.00060681 737436.00062578 737436.00064474
737436.0006637 737436.00068267 737436.00070163 737436.00072059
737436.00073956 737436.00075852 737436.00077748 737436.00079644
737436.00081541 737436.00083437 737436.00085333 737436.0008723
737436.00089126 737436.00091022 737436.00092919 737436.00094815
737436.00096711 737436.00098607 737436.00100504 737436.001024
737436.00104296 737436.00106193 737436.00108089 737436.00109985
737436.00111881 737436.00113778 737436.00115674 737436.0011757
737436.00119467 737436.00121363 737436.00123259 737436.00125156
737436.00127052 737436.00128948 737436.00130844 737436.00132741
737436.00134637 737436.00136533 737436.0013843 737436.00140326
737436.00142222 737436.00144119 737436.00146015 737436.00147911
737436.00149807 737436.00151704 737436.001536 737436.00155496
737436.00157393 737436.00159289 737436.00161185 737436.00163081
737436.00164978 737436.00166874 737436.0016877 737436.00170667
737436.00172563 737436.00174459 737436.00176356 737436.00178252
737436.00180148 737436.00182044 737436.00183941 737436.00185837]]

travel_time : [0.00000e+00 2.50000e+01 5.00000e+01 ... 9.99925e+05 9.99950e+05
9.99975e+05]

x_coord : None
y_coord : None
elev : None
flags : <impdar.lib.ApresData.ApresFlags.ApresFlags object at 0x124670fd0>
header : <impdar.lib.ApresData.ApresHeader.ApresHeader object at 0x124670e10>
data_dtype : float64
n_subbursts : 100
average : 0
time_stamp : [datetime.datetime(2019, 1, 1, 3, 37, 51)]
temperature1 : [-13.805]
temperature2 : [-20.656]
battery_voltage : [0.]
frequencies : [2.00000000e+08 2.00005000e+08 2.00010000e+08 ... 3.99986523e+08
3.99991523e+08 3.99996523e+08]

The raw volages measured at the receiver are not directly interpretable. However, we plot them below to make it clear
exactly what is stored in the data file.

[3]: # plot the raw voltages
plt.figure()
plt.plot(apres_data.travel_time/1e6,apres_data.data[0][0],'k')
plt.ylabel('Voltage')
plt.xlabel('Elapsed Time (sec)');

4.4. Examples 89

ImpDAR Documentation, Release 1.0.0

Pulse Compression and Range Conversion

Since this is an FMCW (frequency modulated continuous wave) radar system, the elapsed time in the above figure is
not directly convertible to a depth below the surface. Instead, we need to do a pulse compression with the transmitted
radar pulse. The code in the next cell are also embedded in the ImpDAR function apres_range(), but we display them
here for clarity.

[4]: # Calculate phase for each range bin centre (measured at t=T/2), given that tau = n/
→˓(B*p)
t = apres_data.travel_time*1e-6 # Time
K = apres_data.header.chirp_grad # FM sweep rate
B = apres_data.header.bandwidth # bandwidth
p = 2 # pad factor for Fourier Transform
nf = int(np.floor(p*apres_data.snum/2)) # number of frequencies to recover
tau = np.arange(nf)/(B*p) # round-trip delay between antennas
Brennan et al., (2014) eq 17
_r = 2.*np.pi*apres_data.header.fc*tau - (K*tau**2)/2. # reference phasor

Plot the reference phasor
plt.figure(figsize=(4,3))
plt.plot(t,np.exp(-1j*_r),'k.',ms=1)
plt.ylabel('Reference Phasor')
plt.xlabel('Time (s)');
plt.tight_layout()

/Users/dlilien/anaconda3/lib/python3.7/site-packages/numpy/core/_asarray.py:85:
→˓ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)

90 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

The ImpDAR function, apres_range, uses the reference phasor shown above to convert from the elapsed time to a
range measurement. As explaned by Brennan et al. (2013) section 3, the FFT-processed waveform is weighted by the
phase conjugate of the reference phasor to do the pulse compression. After executing this function, the data are more
interpretable.

[5]: # Reload the data file
apres_data = load_apres(fname)
pulse compression with the reference phasor
apres_range(apres_data,p)

Plot one chirp from the data file
plt.figure()
Amplitude
plt.subplot(211)
plt.plot(apres_data.Rcoarse,apres_data.data[0][0],'k')
plt.xlim(0,3000)
plt.ylim(-.001,.001)
plt.ylabel('Amplitude')
plt.xlabel('Depth (m)')
Power
plt.subplot(212)
plt.plot(apres_data.Rcoarse,10.*np.log10(apres_data.data[0][0]**2.),'k')
plt.xlim(0,3000)
plt.ylabel('Power (dB)');
plt.xlabel('Depth (m)');

4.4. Examples 91

ImpDAR Documentation, Release 1.0.0

Stacking

As with any system, we want to stack many ApRES chirps together in order to increase the signal-to-noise ratio. The
ImpDAR function, stacking(), does this for us by averaging the signal over the given number of chirps.

The ApRES system writes a new file for every ‘burst’ (set of 100 chirps). However, the load function can handle mul-
tiple files if desired. By default, the stacking function will stack across bursts. When stacking each burst individually,
change the number of chirps input to the stacking() function to self.cnum.

[6]: # Reload the data file
apres_data = load_apres(fname)
Pulse compression
apres_range(apres_data,2,max_range=4000)

Plot the first chirp from the unstacked data
plt.figure()
plt.plot(apres_data.Rcoarse,10.*np.log10(apres_data.data[0][0]**2.),'grey')

Reload and stack before pulse compression
apres_data = load_apres(fname)
stacking(apres_data)
apres_range(apres_data,2,max_range=4000)

Plot the stacked chirp
plt.plot(apres_data.Rcoarse,10.*np.log10(apres_data.data[0][0]**2.),'k')
plt.xlabel('Depth (m)');
plt.ylabel('Power (dB)');

92 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Uncertainty

ImpDAR has two methods for calculating uncertainty in ApRES data. The first is a calculation of the phase uncertainty
for a single acquisition using a ‘noise phasor’ as done by Kingslake et al. (2014). The second is the coherence
uncertainty between two acquisitions which we will show later on.

The ‘noise phasor’ has random phase and amplitude equal to the median amplitude of the measured (or stacked) chirp.
This can be calculated with the phase_uncertainty() function in ImpDAR.

[7]: # Reload the data file
apres_data = load_apres(fname)
Pulse compression
stacking(apres_data)
apres_range(apres_data,2,max_range=4000)
Calculate the uncertainty
_unc,r_unc = phase_uncertainty(apres_data)

plt.figure()
phase axis
ax1 = plt.subplot(111)
plt.plot(apres_data.Rcoarse,_unc[0][0],'k.',ms=0.5,alpha=0.5)
plt.ylim(0,np.pi/2.)
plt.yticks([0,np.pi/4.,np.pi/2.],labels=['0','π/4','π/2'])
plt.ylabel('Phase Uncertainty');
twin axis for range
axt = plt.twinx(ax1)
plt.ylim(0,100.*phase2range(np.pi/2.,apres_data.header.lambdac));
plt.ylabel('Range Uncertainty (cm)');

/Users/dlilien/work/sw/impdar/impdar/impdar/lib/ApresData/_ApresDataProcessing.py:164:
→˓ RuntimeWarning: invalid value encountered in arcsin
p_uncertainty = np.abs(np.arcsin(noise_orth/np.abs(meas_phasor)))

4.4. Examples 93

ImpDAR Documentation, Release 1.0.0

Phase Coherence

The coherence between two acquisitions is calculated using a correlation coefficient on samples within a moving
window using the function, range_diff(). The output from this function gives: the depths at the center of the window
for each step, the coherence resulting from the correlation at each step, the range difference between acquisitions, and
the uncertainty.

This coherence value can be used to calculate the range difference (one of the outputs as stated above), but can also be
used for polarimetric coherence (e.g. Jordan et al., 2020).

The default uncertainty calculation in this case is to use the Cramer Rao bound (e.g. Jordan et al., 2020). Another
option though, is to use the ‘noise-phasor’ uncertainty as above calculated in each acquisition and added together for
the total uncertainty. This is an option in the range_diff() function.

[8]: # Load the data from year 1
fname1 = ['./data/DATA2019-01-01-0337.DAT']
apres_data1 = load_apres(fname1)
stacking(apres_data1)
apres_range(apres_data1,2)
1_unc,r1_unc = phase_uncertainty(apres_data1)
acq1 = apres_data1.data[0][0]
Load the data from year 2
fname2 = ['./data/DATA2019-12-21-0025.DAT']
apres_data2 = load_apres(fname2)
stacking(apres_data2)
apres_range(apres_data2,2)
2_unc,r2_unc = phase_uncertainty(apres_data2)
acq2 = apres_data2.data[0][0]

Do the phase-coherence calculation
over a small moving window from top to bottom of profile
win = 20 # number of samples in the window
step = 20 # window step (number of samples)
ds,phase_diff,r_diff,r_diff_err = range_diff(apres_data1,acq1,acq2,win,step)
amp = abs(phase_diff) # the magnitude of phase coherence

(continues on next page)

94 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

Plot a figure
plt.figure(figsize=(6,6))
Plot the stacked profile from each acquisition
plt.subplot(511)
plt.tick_params(labelbottom=False)
plt.xlim(0,3500)
plt.plot(apres_data1.Rcoarse,10.*np.log10(acq1**2.),'k',lw=2,label='year1')
plt.plot(apres_data2.Rcoarse,10.*np.log10(acq2**2.),'indianred',lw=.5,label='year2')
plt.ylabel('Power (dB)')
plt.legend()
Plot the magnitude of coherence between seasons
ax2 = plt.subplot(512)
plt.tick_params(labelbottom=False)
plt.xlim(0,3500)
plt.plot(ds,amp,'k.',ms=2)
plt.ylabel('Co. Mag.')
Plot the phase offset (converted to range)
ax3 = plt.subplot(513)
plt.tick_params(labelbottom=False)
plt.xlim(0,3500)
plt.plot(ds,r_diff,'.',color='k',label='%s'%win,ms=2,zorder=1)
plt.ylabel('Δz (m)')
Plot the uncertainty calculated from the Cramer-Rao Bound (Jordan et al., 2020)
plt.subplot(514)
plt.tick_params(labelbottom=False)
plt.xlim(0,3500)
plt.ylim(0,.1)
plt.plot(ds,r_diff_err,'k.',ms=2)
plt.ylabel('C-R (m)');
Redo the calculation for 'noise-phasor' uncertianty and plot
ds,phase_diff,r_diff,r_diff_err = range_diff(apres_data1,acq1,acq2,win,step,

r_uncertainty=r1_unc[0][0]+r2_unc[0][0],
uncertainty='noise_phasor')

plt.subplot(515)
plt.xlim(0,3500)
plt.ylim(0,.1)
plt.plot(ds,r_diff_err,'k.',ms=1,alpha=0.5)
plt.ylabel('Kings. Unc. (m)');
plt.xlabel('Depth (m)');

/Users/dlilien/work/sw/impdar/impdar/impdar/lib/ApresData/_ApresDataProcessing.py:289:
→˓ RuntimeWarning: Mean of empty slice
r_diff_unc = np.array([np.nanmean(r_uncertainty[i-win//2:i+win//2]) for i in idxs])

4.4. Examples 95

ImpDAR Documentation, Release 1.0.0

ImpDAR plot_power() Tutorial

Introduction

This Notebook shows how, after picking a layer in ice or snow radar data, you would go about verifying that you
have picked a single line (and not a combination of multiple lines, meaning you would have to repick that layer). But
first, what does it mean to pick a layer? Picking is the process of digitizing reflectors within the glacier or ice sheet.
As electromagnetic waves are sent through ice or snow, part of that wave is reflected back towards us and can be
measured by a receiver antenna. How quickly that electromagnetic wave travels through a given medium is controlled
by its permittivity. Each layer that you are seeing in a radargram is the result of permittivity contrasts between layers
of different materials like ice, snow, firn, dust, and especially bedrock. Permittivity is heavily dependent on density
and conductivity, and so you can clearly see the boundaries between ice-snow, ice-firn, and ice-bedrock where the
permittivity changes..

While a pick’s power can vary along its length, just as a layer in ice or snow data can vary in depth depending on the
surface and bed topography, power should not change drastically. It should be smooth during transitions if it changes
at all. If you want to learn more about the way ImpDAR digitizes reflectors, please see the documentation about the
imppick library here.

Let’s take a look at what a picked line looks like when you load it in ImpDAR. As an example, we will use a line
collected in early 2020 from Hercules Dome, Antarctica which has already undergone the following processing steps:
- the pretrigger data was cropped from the top of the data - a normal move-out correction was applied - the data was
vertically bandpassed around a central frequency - then interpolated to regular grid spacing - migrated - and then
picked

[1]: # We get annoying warnings about backends that are safe to ignore
import warnings
warnings.filterwarnings('ignore')

(continues on next page)

96 Chapter 4. Contributing

https://impdar.readthedocs.io/en/latest/bin/imppick.html
https://impdar.readthedocs.io/en/latest/bin/imppick.html

ImpDAR Documentation, Release 1.0.0

(continued from previous page)

import numpy as np

%matplotlib inline
import matplotlib.pyplot as plt

import impdar
from impdar.lib import load
from impdar.lib import plot

Loading Data

[2]: #example matlab file name on disk
herc_mat_file = './data/HDGridE_x53_picks.mat'

#load the hercules dome data, now an ImpDAR RadarData object
dat = load.load('mat', herc_mat_file)[0]

[3]: #let's inspect our data file
plot.plot_radargram(dat)
plt.show()

[4]: #we can inspect the RadarData attributes here
vars(dat)

4.4. Examples 97

ImpDAR Documentation, Release 1.0.0

[4]: {'chan': 2,
'data': array([[0. , 0. , 0. , ..., 0. ,

0. , 0.],
[0. , 0. , 0. , ..., 0. ,
0. , 0.],

[0. , 0. , 0. , ..., 0. ,
0. , 0.],

...,
[-0.79655623, -0.78011286, -0.70133412, ..., -0.60073161,
0.28414989, 0.31941605],

[-0.47651964, -0.47275442, -0.66581929, ..., -0.68916953,
0.12462759, 0.28418875],

[-0.21030229, -0.16901422, -0.61275566, ..., -0.746943 ,
-0.04463077, 0.22238588]]),

'decday': array([737454.07234843, 737454.07236893, 737454.07238942, ...,
737454.10497516, 737454.1049937 , 737454.10501218]),

'dt': 5e-09,
'lat': array([-86.44000996, -86.43999383, -86.4399777 , ..., -86.41424587,

-86.41422667, -86.41420724]),
'long': array([252.85011635, 252.84942301, 252.84872966, ..., 251.78453531,

251.78386739, 251.78320123]),
'pressure': array([0, 0, 0, ..., 0, 0, 0], dtype=uint8),
'snum': 7415,
'tnum': 1553,
'trace_int': array([0, 0, 0, ..., 0, 0, 0], dtype=uint8),
'trace_num': array([1, 2, 3, ..., 1551, 1552, 1553], dtype=uint16),
'travel_time': array([0.0000e+00, 5.0000e-03, 1.0000e-02, ..., 3.7060e+01, 3.
→˓7065e+01,

3.7070e+01]),
'trig': 15,
'trig_level': array([50, 50, 50, ..., 50, 50, 50], dtype=uint8),
'nmo_depth': None,
'elev': array([2595.40362135, 2595.41819483, 2595.43276831, ..., 2598.00668057,

2597.93407972, 2597.87038998]),
'dist': array([634.3, 639.3, 644.3, ..., 8384.3, 8389.3, 8394.3]),
'x_coord': array([-369717.25869631, -369717.55360547, -369717.84851463, ...,

-370193.10233268, -370193.66522139, -370194.2564618]),
'y_coord': array([-114092.32989171, -114097.32118699, -114102.31248227, ...,

-121824.02863999, -121828.9967592 , -121833.96162683]),
'fn': '../data/HDGridE_x53_picks.mat',
'data_dtype': dtype('<f8'),
'flags': <impdar.lib.RadarFlags.RadarFlags at 0x7fb9a64862e8>,
'picks': <impdar.lib.Picks.Picks at 0x7fb9a647bcf8>}

When we load the data file in ImpDAR, we can access the picks and their corresponding indices with dat.picks
and dat.picks.picknums respectively. dat.picks.picknums returns an array back to you with indices that
you can use when specifying which picked layer you would like to plot with the plot_power() method.

[5]: dat.picks.picknums

[5]: [1, 2]

We can also inspect dat.picks with the vars() method. Otherwise, you will only get back:

[6]: dat.picks

[6]: <impdar.lib.Picks.Picks at 0x7fb9a647bcf8>

98 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

[7]: vars(dat.picks)

[7]: {'samp1': array([[nan, nan, nan, ..., nan, nan, nan],
[4892., 4892., nan, ..., 2711., 2709., nan]]),

'samp2': array([[nan, nan, nan, ..., nan, nan, nan],
[4925., 4925., nan, ..., 2731., 2728., nan]]),

'samp3': array([[nan, nan, nan, ..., nan, nan, nan],
[4941., 4944., nan, ..., 2749., 2746., nan]]),

'time': array([[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan]]),

'power': array([[nan, nan, nan, ..., nan,
nan, nan],

[22.82906175, 30.01928916, nan, ..., 59.5785543 ,
45.63542284, nan]]),

'picknums': [1, 2],
'lasttrace': <impdar.lib.LastTrace.LastTrace at 0x7fb9cc33fb70>,
'lt': <impdar.lib.LeaderTrailer.LeaderTrailer at 0x7fb9cc33fba8>,
'pickparams': <impdar.lib.PickParameters.PickParameters at 0x7fb99785fcc0>,
'radardata': <impdar.lib.RadarData.RadarData at 0x7fb9cc33fb38>,
'lines': []}

Plotting Picks

Now we are ready to plot the radargram along with the picks that we have previously saved. ImpDAR’s
plot_radargram() method was designed for this purpose. Note, that without the optional parameters,
plot_radargram() behaves exactly like the plot() method. However, now we can specify our x and y axis
units as well as the colors that we would like to use to show our picked lines. Tthe default is magenta-green-magenta
for the top, middle, and bottom of the wavelet used to pick lines, and this is what you will encounter in the GUI when
you use the immpick command from the terminal.

[8]: plot.plot_radargram(dat, xdat='dist', ydat='depth', pick_colors='mgm')
plt.show()

4.4. Examples 99

ImpDAR Documentation, Release 1.0.0

Calculating Power Across Picks

Now we are ready to plot the power of our pick to verify it. We can call the plot_power() method from a Jupyter
Notebook:

[9]: fig, ax = plot.plot_power(dat, 1)

100 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

[10]: fig, ax = plot.plot_power(dat, 2)

4.4. Examples 101

ImpDAR Documentation, Release 1.0.0

If you wanted to run this method from the command line instead, you could use the following command to plot the
power along the first pick:

impdar plot -power 1 HDGridE_x53_picks.mat

As you can see, our pick’s power does not change drastically along its length. This gives us more confidence that we
have correctly identified a single layer within the snow or ice data. Doing this for each and every pick in a radargram
profile would be a time-consuming process. But checking important layers at different depths in a radargram’s profile
can help you quickly verify that you have isolated individual ice and snow layers.

102 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

[]:

4.4.2 Additional examples

The primary examples that might be useful are those showing the different processing steps and the basics of the
picking gui.

Additional examples are provided showing plotting both via the command line and via the API, and loading, though
loading in ImpDAR is a single line so the examples are trivial.

Loading Examples

There is not a lot documented here because loading supported files is extremely straightforward in ImpDAR. Loading
(i.e. converting raw radar output into the ImpDAR/StoDeep matlab format) is accomplished in a single command with
the impdar load command.

The only real variation amongst filetypes is that you need to tell impdar what type of input file you are using. For
example, for GSSI files, impdar load gssi fn [fn ...] will produce, for each input fn, a file with identical
name but file ext ‘.mat’. Often, one might want to put all these outputs in a separate folder. The -o folder_name allows
specification of an output folder. If you wanted to load PulseEkko data, it would be as simple as switching pe for
gssi in the command above.

Processing examples

There are three main options for processing. The first is using impdar proc with options in order to do multiple
processing steps. impproc allows simpler syntax and greater flexibility, but only can apply one processing step
at a time. Finally, there are processing options within the pick GUI that allow you to see the effects of the steps
immediately, though replotting can be expensive for large datasets and batch processing with the GUI is not possible.

impdar proc

With impdar proc, you can perform a number of processing steps in a single line. We are starting with data in
crossprofile.mat.

4.4. Examples 103

ImpDAR Documentation, Release 1.0.0

104 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

This profile does not have anything above the first return; often we would have started recording earlier and have some
samples that we would want to delete off the top to start. There is a lot of variability in the overall return power in
different traces (resulting from the data collection, not from sub-surface variability). There is also a lot of noise. To
vertically bandpass the data between 200 and 600 MHz, adaptively horizontally filter, stack 3 traces, and do a normal
moveout correction with no transmit-receive separation only requires running

impdar proc -vbp 200 600 -ahfilt -restack 3 -nmo 0 1.69 crossprofile.mat

and then the output is saved in crossprofile_proc.mat.

4.4. Examples 105

ImpDAR Documentation, Release 1.0.0

106 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

impproc

impproc provides a bit cleaner syntax than impdar proc but accomplishes the same tasks. It is often useful to
see the effect of each processing step individually, and impproc gives named outputs for each step that allow easy
identification and organization. We will use the same example as above, starting with this raw data in crossprofile.mat

4.4. Examples 107

ImpDAR Documentation, Release 1.0.0

108 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

First, lets do some vertical filtering. As before, we will vertically bandpass with a 5th-order forward-backward Butter-
worth filter from 200 to 600 MHz.

impproc vbp 200 600 crossprofile.mat

This gives an output in ‘crossprofile_bandpassed.mat’. We can see that this has removed most of the noise.

4.4. Examples 109

ImpDAR Documentation, Release 1.0.0

110 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

We still probably have some noise coming in horizontally (e.g. long-wavelength changes in return power due to our
batteries draining in the radar controller). To remove this, we can remove something akin to the average trace.

impproc ahfilt crossproile_bandpassed.mat

Which gives us ‘crossproile_bandpassed_ahfilt.mat’. This looks about the same, though layers have become slightly
more clear.

4.4. Examples 111

ImpDAR Documentation, Release 1.0.0

112 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Since layer slopes are small, we have lots of extraneous data. We can restack to reduce noise a bit more and reduce
filesize.

impproc restack 3 crossprofile_bandpassed_ahfilt.mat

The output is in ‘crossprofile_bandpassed_ahfilt_restacked.mat’. Again, this looks about the same, but we have re-
duced the filesize by about a factor of 3.

4.4. Examples 113

ImpDAR Documentation, Release 1.0.0

114 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Now we want to look at this in terms of depth. We are going to do this with a constant vertical velocity. This particular
data was collected with GSSI radar with a single transmit/receive antenna, so there is no need to do any geometric
correction for the triangular pattern of transmit/receive that we would get with spatially separated antennas (like many
HF systems have).

impproc nmo 0 crossprofile_bandpassed_ahfilt_restacked.mat

The output is in ‘crossprofile_bandpassed_ahfilt_restacked_nmo.mat’. The plot looks identical to before, but we see
that the y-axis is now in depth.

4.4. Examples 115

ImpDAR Documentation, Release 1.0.0

116 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

If the permittivity is not constant (for example in the case of variable snow/firn density), we want to make that correc-
tion here as well. Optionally, pass a .csv filename as a string to the nmo filter (i.e. rho_profile=’__filename__.csv’).
The file should have two columns, depth and density. ImpDAR has a couple of options for permittivity models,
with the default being the DECOMP mixing model for firn permittivity (Wilhelms, 2005). As an example, here is a
measured density profile with modeled permittivity and velocity profiles,

4.4. Examples 117

ImpDAR Documentation, Release 1.0.0

118 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

ImpDAR then takes the modeled velocities and updates the depth profile,

4.4. Examples 119

ImpDAR Documentation, Release 1.0.0

120 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

For some datasets, diffraction hyperbolae distort the image, moving much energy away from the true location of
the reflecting surface. In these cases, migration is an optional processing step which moves the energy back to its
appropriate position in the image. For a more thorough review of the migration routines implemented in ImpDAR, see
the next example page on migration.

GUI

After running imppick, the GUI has a ‘processing’ menu.

These options should be self explanatory. If additional arguments are needed by the processing step, a dialog box will
be raised. For example, cropping requires information about where you want to crop.

There is no automatic saving when processing with the GUI. File > Save (or ctrl command s).

Migration

What is Migration?

The goal of migration is to transform a geophysical dataset (typically seismic data but in this case radar) into an
image that accurately represents the subsurface stratigraphy. Migration is a mathematical transformation in which
geophysical events (timing of wave return) are re-located to where the event (the reflection) occurred in the subsurface
rather than the time at which it was recorded by the receiver at the surface. Because off-nadir information intrudes into
each trace, the image must be migrated as a whole to describe the true reflector geometry. Migration adjusts the angle
of dipping reflectors, shortens and moves reflectors updip, unravels bowties, and most generally collapses diffractions.

4.4. Examples 121

ImpDAR Documentation, Release 1.0.0

The migration problem is illustrated in the image above. Dipping reflectors are imaged by an off-nadir (‘apparent’)
reflection. The ray path of the apparent reflection is not the same as the depth of the reflector directly below the source.
The migrator’s equation is a simple analytic way to adjust the angle of a dipping reflector,

𝑡𝑎𝑛(𝜉𝑎) = 𝑠𝑖𝑛(𝜉)

where 𝜉 is the true reflector dip and 𝜉𝑎 is the apparent dip shown in the unmigrated image. While this equation is
useful, it does not provide the full capability of migrating the entire image. To do that, we explore a few different
methods below.

Note: migration typically assumes coincident source and receiver, meaning that this processing step should be carried
out after any stacking or move-out (nmo) corrections.

Synthetic Example

Here, we create a synthetic domain to use as an example for the ImpDAR migration routines. For this case, the
permittivity is elevated within the dark blue box in the image below (𝜖𝑟 = 12 inside and 3.2 for ice outside).

122 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Loading this domain into gprmax (a finite-difference time-domain modeling software), we simulate a common-offset
radar survey over the box with the output as a synthetic radargram. The source is a 3-MHz wave from a Hertzian
Dipole antenna. Source-receiver antenna separation is 40 m, and the step size between traces is 4 m.

4.4. Examples 123

ImpDAR Documentation, Release 1.0.0

This synthetic image illustrates why we need to migrate. There are large hyperbolae that extend away from the actual
location of the box in both horizontal directions. These hyperbola, or diffraction curves, do not accurately represent
the subsurface stratigraphy, they are only a result of imaging the box from the side as an off-nadir reflector.

124 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Kirchhoff Migration

The first migration method that we use here is the most direct to explain conceptually. Originally (~1920’s), geophys-
ical datesets were migrated by hand, and this method follows the logic used then. The energy is integrated along each
diffraction curve and placed at the apex of the curve (Hagedoorn, 1954). The diffraction curves are expected to be
hyperbolic (in a constant velocity medium they will be), so here we iterate through each point of the image, looking
for a hyperbolic diffraction curve around that point and integrating the power along it.

impdar migrate --mtype kirch synthetic.mat

4.4. Examples 125

ImpDAR Documentation, Release 1.0.0

Now we can see the box in its original location (i.e. ~30-55 km lateral distance and ~30 m depth). This method seems
to work, but it is slow (even for this small synthetic dataset) and it ‘over migrates’ through much of the domain as can
be seen by the upward facing hyperbola (‘smileys’) around the edges and below the box.

126 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Summary of Kirchhoff Migration:

• Strengths - Conceptually simple, Migrates steeply dipping reflectors.

• Weaknesses - Slow, Over migrates, No lateral velocity variation.

Stolt Migration

Migration is most commonly done in the frequency domain. In this case, the transformation is one from vertical
frequency (𝜔𝑧) to vertical wavenumber (𝑘𝑧); thus, these migration routines are grouped as ‘frequency-wavenumber’
routines. The transformation is done in the frequency domain, so a 2-D Fourier transform is used before the migration
and an inverse Fourier transform after. There are many such migration routines; here I highlight a couple popular ones
which have been implemented in ImpDAR.

The first, and probably the simplest, of the frequency-wavenumber migration routines is ‘Stolt Migration’. Stolt Mi-
gration is done over the entire domain simultaneously, so it requires the assumption of a constant velocity throughout.
The transformation is

𝑃 (𝑥, 𝑧, 𝑡 = 0) =

∫︁ ∫︁ [︃
𝑣

2

𝑘𝑧√︀
𝑘2𝑥 + 𝑘2𝑧

]︃
𝑃
(︁
𝑘𝑥, 0,

𝑣

2

√︀
𝑘2𝑥 + 𝑘2𝑧

)︁
𝑒𝑖𝑘𝑥𝑥𝑖𝑘𝑧𝑧𝑑𝑘𝑥𝑑𝑘𝑧

where an interpolation is done from 𝜔𝑧 to 𝑘𝑧 in frequency-space. The routine is implemented in ImpDAR as,

impdar migrate --mtype stolt synthetic.mat

4.4. Examples 127

ImpDAR Documentation, Release 1.0.0

Stolt migration is great in places where the velocity is known to be constant. It is quite a bit faster than the other
routines. Here though, we need to be careful about migrating power in from the edges of the domain, as can be seen
in the lower corners above. For this reason, we apply a linear taper to the data so that the Fast Fourier Transform has

128 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

a smooth transition from data to the zeros that it fills in around the edges.

Summary of Stolt Migration:

• Strengths – Fast, Resolves steeply dipping layers.

• Weaknesses – Constant velocity.

Phase-Shift Migration

The second frequency-wavenumber migration routines is actually a set of a few called phase-shift migration (some-
times Gazdag migration). A phase-shifting operator 𝑒ˆ−𝑖𝑘𝑧𝑧 is applied at each z-step in downward continuation.
These methods are advantageous in that they allow variable velocity as one steps down. Generally, this only allows
vertical velocity variation but there is also a case which accomadates lateral velocity variation (phase-shift plus inter-
polation).

impdar migrate --mtype phsh synthetic.mat

Constant velocity phase-shift migration is the default in ImpDAR, so it can also be called as,

impdar migrate synthetic.mat

4.4. Examples 129

ImpDAR Documentation, Release 1.0.0

Much like the result from Kirchhoff migration, we see upward dipping ‘smileys’ in this migrated image.

Summary of Phase-Shift Migration:

130 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

• Strengths – Accomodates velocity variation (particularly appropriate for vertical variations, i.e. in snow/firn or
similar).

• Weaknesses – Maximum dip angle.

SeisUnix Migration Routines

There are many migration routines implemented in the seismic processing package, SeisUnix. With ImpDAR, we
have no intent to replicate the work that they have done; instead, we allow the user to easily convert radar data to .segy,
migrate with SeisUnix, then convert back, all in a kind of black-box fashion with only one command. If SeisUnix is
not installed, this command with raise an error.

impdar migrate --mtype sumigtk synthetic.mat

4.4. Examples 131

ImpDAR Documentation, Release 1.0.0

132 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Data Example

Below is a real example of migration in ImpDAR for 3-MHz ground-based data from the Northeast Greenland Ice
Stream (Christianson et al., 2014).

Unmigrated Data:

4.4. Examples 133

ImpDAR Documentation, Release 1.0.0

Stolt:

134 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

Phase-Shift:

4.4. Examples 135

ImpDAR Documentation, Release 1.0.0

SeisUnix T-K:

136 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

References:

Yilmaz (2001). Seismic Data Processing.

4.4. Examples 137

ImpDAR Documentation, Release 1.0.0

Sherrif and Geldart (1995). Exploration Seismology.

Hagedorn (1954). Seismic Imaging Migration.

Stolt (1978). Migration by Fourier Transform. Geophysics

Gazdag (1978). Wave Equation Migration with the Phase-Shift Method. Geophysics

Christianson et al. (2014). Dilatant till facilitates ice-stream flow in northeast Greenland. Earth and Planetary
Research Letters.

Plotting examples

Visualizing output is an essential piece of processing and the disseminating radar data. You likely will need to look at
the output many times so that you can discern the effect of different processing steps, and then you will likely want to
make a figure at the end. With these two use cases in mind, ImpDAR provides both command-line plotting, for quick
and easy visualization, and API calls more customized plots.

impplot

ImpDAR permits you to make plots by calling impdar plot [fns] with a few options, but I recommend using
impplot instead. The syntax is cleaner and it is more clear what you are doing. There are different types of plots
you can make with impplot, described below, but it is first worth noting you can always add the -s directive to save
the output to a file rather than pulling it up in a matplotlib figure window.

radargram

The most common thing to plot is probably the full radargram. The basic syntax is impplot rg [fns], with
additional options described with impplot. When you run impplot rg you will get something like this popping up
in an interactive window.

138 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

4.4. Examples 139

ImpDAR Documentation, Release 1.0.0

You can pan and zoom around the plot, and determine what other processing steps you might want to take. You can
this with multiple filenames and get a group of plots. If there are picks in the file, these will be displayed as well,
though you can deactivate this feature with -nopicks.

traces

Sometimes you may want to look at how the samples in an individual trace, or group of traces, vary with depth. A
range of traces can be plotted with impplot [fns] trace_start trace_end. The output is something like
this.

140 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

4.4. Examples 141

ImpDAR Documentation, Release 1.0.0

power

This command is used to look at the variability in reflected power in space. You will get a single plot with the return
power of a given layer in all the different profiles called. The syntax is impplot [fns] layer. If there are
projected coordinates, those will be used, and otherwise you are stuck with lat/lon. The result for two crossing profiles
might look something like this.

142 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

4.4. Examples 143

ImpDAR Documentation, Release 1.0.0

API

There are several reasons you might want to use an API call rather than impplot: perhaps want to modify the
output, perhaps by annotating it or plotting on top of it; you may want to put a panel made by ImpDAR in a figure
with other subplots; or maybe you just need to have multiple panels plotted by ImpDAR. Regardless, in these cases I
would recommend loading up the data then using the explicit plotting functions in the plotting library. I’ll just give
an example of a several-panel plot with all panels produced through ImpDAR. Say you want to make a 3-panel plot
showing two profiles and the power returned from both. You could use

import matplotlib.pyplot as plt
from impdar.lib import RadarData, plot

Load the data we are using; in this case they are already processed
profile_1 = RadarData.RadarData('along_picked.mat')
profile_2 = RadarData.RadarData('cross_picked.mat')

Make the figure we will plot upon--need some space between axes
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, gridspec_kw={'hspace': 1.0}, figsize=(12,
→˓8))

plot the two radargrams
plot.plot_radargram(profile_1, fig=fig, ax=ax1)
plot.plot_radargram(profile_2, fig=fig, ax=ax2)

Now look at their return power in space on layer 5
plot.plot_power([profile_1, profile_2], 5, fig=fig, ax=ax3)

#document what we are looking at
ax1.set_title('Along flow')
ax2.set_title('Across flow')
ax3.set_title('Layer 5\nreturn power')

see how it turned out
plt.show(fig)

And this will produce a nice 3-panel figure (though we would certainly want to do a better job with reasonable aspect
ratios for most applications).

144 Chapter 4. Contributing

ImpDAR Documentation, Release 1.0.0

4.4. Examples 145

ImpDAR Documentation, Release 1.0.0

Picking examples

It is hard to give examples of GUI use, but the different functionalities are fairly well documented along with imppick.
In particular, look through the workflow on that page for a normal procedure for interpreting a profile.

146 Chapter 4. Contributing

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

147

ImpDAR Documentation, Release 1.0.0

148 Chapter 5. Indices and tables

Python Module Index

i
impdar.lib.picklib, 20
impdar.lib.PickParameters, 24
impdar.lib.Picks, 22
impdar.lib.plot, 17
impdar.lib.process, 26

149

ImpDAR Documentation, Release 1.0.0

150 Python Module Index

Index

A
adaptivehfilt() (imp-

dar.lib.RadarData.__init__.RadarData
method), 15

add_pick() (impdar.lib.Picks.Picks method), 23
addpicktype (impdar.lib.PickParameters.PickParameters

attribute), 24
agc() (impdar.lib.RadarData.__init__.RadarData

method), 14
apickflag (impdar.lib.PickParameters.PickParameters

attribute), 24
apickthresh (impdar.lib.PickParameters.PickParameters

attribute), 24
attrs_guaranteed (imp-

dar.lib.RadarData.RadarData attribute),
10

attrs_optional (impdar.lib.RadarData.RadarData
attribute), 11

C
chan (impdar.lib.RadarData.RadarData attribute), 11
check_attrs() (impdar.lib.RadarData.RadarData

method), 11
concat() (in module impdar.lib.process), 26
constant_space() (imp-

dar.lib.RadarData.__init__.RadarData
method), 14

crop() (impdar.lib.RadarData.__init__.RadarData
method), 13

D
data (impdar.lib.RadarData.RadarData attribute), 11
decday (impdar.lib.RadarData.RadarData attribute),

11
dist (impdar.lib.RadarData.RadarData attribute), 11
dt (impdar.lib.PickParameters.PickParameters at-

tribute), 24
dt (impdar.lib.RadarData.RadarData attribute), 11

E
elev (impdar.lib.RadarData.RadarData attribute), 11
elev_correct() (imp-

dar.lib.RadarData.__init__.RadarData
method), 14

F
fn (impdar.lib.RadarData.RadarData attribute), 11
freq (impdar.lib.PickParameters.PickParameters

attribute), 24
freq_update() (imp-

dar.lib.PickParameters.PickParameters
method), 25

FWW (impdar.lib.PickParameters.PickParameters at-
tribute), 24

G
get_intersection() (in module imp-

dar.lib.picklib), 20

H
hfilt() (impdar.lib.RadarData.__init__.RadarData

method), 17
highpass() (impdar.lib.RadarData.__init__.RadarData

method), 16
horizontalfilt() (imp-

dar.lib.RadarData.__init__.RadarData
method), 16

I
impdar.lib.picklib (module), 20
impdar.lib.PickParameters (module), 24
impdar.lib.Picks (module), 22
impdar.lib.plot (module), 17
impdar.lib.process (module), 26
ImpdarError, 27

L
lasttrace (impdar.lib.Picks.Picks attribute), 23

151

ImpDAR Documentation, Release 1.0.0

lat (impdar.lib.RadarData.RadarData attribute), 11
load() (impdar.lib.load method), 25
load_and_exit() (impdar.lib.load method), 25
long (impdar.lib.RadarData.RadarData attribute), 11
lt (impdar.lib.Picks.Picks attribute), 23

M
migrate() (impdar.lib.RadarData.__init__.RadarData

method), 15

N
nmo() (impdar.lib.RadarData.__init__.RadarData

method), 13
nmo_depth (impdar.lib.RadarData.RadarData at-

tribute), 11

O
output_csv() (imp-

dar.lib.RadarData.__init__.RadarData
method), 12

output_shp() (imp-
dar.lib.RadarData.__init__.RadarData
method), 12

P
packet_pick() (in module impdar.lib.picklib), 21
packet_power() (in module impdar.lib.picklib), 21
pick() (in module impdar.lib.picklib), 21
picknums (impdar.lib.Picks.Picks attribute), 23
PickParameters (class in imp-

dar.lib.PickParameters), 24
pickparams (impdar.lib.Picks.Picks attribute), 23
Picks (class in impdar.lib.Picks), 22
plength (impdar.lib.PickParameters.PickParameters

attribute), 24
plot() (in module impdar.lib.plot), 17
plot_ft() (in module impdar.lib.plot), 18
plot_hft() (in module impdar.lib.plot), 18
plot_picks() (in module impdar.lib.plot), 18
plot_power() (in module impdar.lib.plot), 18
plot_radargram() (in module impdar.lib.plot), 19
plot_spectrogram() (in module impdar.lib.plot),

19
plot_traces() (in module impdar.lib.plot), 20
pol (impdar.lib.PickParameters.PickParameters at-

tribute), 24
power (impdar.lib.Picks.Picks attribute), 23
pressure (impdar.lib.RadarData.RadarData at-

tribute), 11
process() (in module impdar.lib.process), 26
process_and_exit() (in module imp-

dar.lib.process), 26

R
RadarData (class in impdar.lib.RadarData), 10
radardata (impdar.lib.PickParameters.PickParameters

attribute), 25
rangegain() (impdar.lib.RadarData.__init__.RadarData

method), 14
restack() (impdar.lib.RadarData.__init__.RadarData

method), 14
reverse() (impdar.lib.RadarData.__init__.RadarData

method), 13

S
samp1 (impdar.lib.Picks.Picks attribute), 22
samp2 (impdar.lib.Picks.Picks attribute), 23
samp3 (impdar.lib.Picks.Picks attribute), 23
save() (impdar.lib.RadarData.__init__.RadarData

method), 12
save_as_segy() (imp-

dar.lib.RadarData.__init__.RadarData
method), 12

scst (impdar.lib.PickParameters.PickParameters
attribute), 24

snum (impdar.lib.RadarData.RadarData attribute), 11

T
time (impdar.lib.Picks.Picks attribute), 23
tnum (impdar.lib.RadarData.RadarData attribute), 11
to_struct() (impdar.lib.PickParameters.PickParameters

method), 25
to_struct() (impdar.lib.Picks.Picks method), 23
trace_int (impdar.lib.RadarData.RadarData at-

tribute), 11
trace_num (impdar.lib.RadarData.RadarData at-

tribute), 11
travel_time (impdar.lib.RadarData.RadarData at-

tribute), 11
trig (impdar.lib.RadarData.RadarData attribute), 12
trig_level (impdar.lib.RadarData.RadarData

attribute), 12

U
update_pick() (impdar.lib.Picks.Picks method), 23

V
vertical_band_pass() (imp-

dar.lib.RadarData.__init__.RadarData
method), 15

W
winavg_hfilt() (imp-

dar.lib.RadarData.__init__.RadarData
method), 16

152 Index

ImpDAR Documentation, Release 1.0.0

X
x_coord (impdar.lib.RadarData.RadarData attribute),

12

Y
y_coord (impdar.lib.RadarData.RadarData attribute),

12

Index 153

	Requirements
	Installation
	Beginner
	Advanced

	Examples
	Contributing
	Installation
	API
	Executables
	Examples

	Indices and tables
	Python Module Index
	Index

